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Abstract

In recent years, a series of papers have appeared on algebraic relationships between the solutions (e.g., deflections,

buckling loads and frequencies) of a given higher-order plate theory and the classical plate theory. The bending re-

lationships, for example, can be used to generate the transverse deflection of a plate according to the particular higher-

order theory from the known deflection of the same problem according to the classical plate theory. In the present study

relationships between the bending solutions of several higher-order plate theories and the classical plate theory are

obtained in a canonical form (i.e., one set of relationships contain several theories and they can be specialized to a

specific theory by assigning values to the constants appearing in the relationships). Numerical examples of bending

solutions for rectangular plates with various boundary conditions are presented to show how the relations can be used

to determine the deflections and bending moments for various theories. The relationships are validated by comparing

the numerical results obtained using the relationships for the Mindlin plate theory against those computed using the

ABAQUS finite element program.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical plate theory, also known as the Kirchhoff plate theory (Szilard, 1974; Reddy, 1999), is used

extensively to analyze plates whose length-to-thickness ratio is of the order of 25 or greater (i.e., thin

plates). Bending, buckling and vibration solutions of plates according to the classical plate theory have been

well-documented in many standard textbooks like Timoshenko and Woinowsky-Krieger (1959), Mansfield

(1989) and Reddy (1999). When the plate�s properties are anisotropic and the length-to-thickness ratio is

less than 25, the effect of transverse shear deformation on deflections, buckling loads and frequencies can be

significant, and it is necessary to use theories that account for transverse shear deformation.
There exists a number of plate theories that account for transverse shear strains and stresses and provide

various degrees of refinement to the classical plate theory. The more commonly known refined plate theo-

ries are the Reissner plate theory (Reissner, 1945, 1947), the Mindlin plate theory (Mindlin, 1951) and the
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Levinson plate theory (Levinson, 1980). Except for the Reissner plate theory, the aforementioned plate

theories are developed using an assumed displacement field. The Reissner theory, on the other hand, is

based on an assumed stress field. The Mindlin plate theory is often referred to as a first-order 1 shear

deformation plate theory while the Levinson plate theory is a third-order theory. While shear deformable
plate theories more accurately describe the kinematic behavior of thick plates than the classical plate

theory, analytical solutions of shear deformation theories are more difficult to formulate. A limited number

of analytical solutions of the first-order shear deformation plate theory may be found in the textbooks by

Timoshenko and Woinowsky-Krieger (1959) and Reddy (1999, 2002); analytical results to selected plate

problems using the Levinson plate theory were developed by Levinson and Cooke (1983) and Cooke and

Levinson (1983), whereas Salerno and Goldberg (1960) provided analytical solutions of the Reissner plate

theory.

The amount of literature available on analytical solutions of refined theories is hence limited and it is
useful to have relationships that connect solutions of the classical plate theory to those of the available

refined theories so that one can immediately determine the solution of a plate problem according to a shear

deformation theory from the corresponding classical plate theory solution. The relationships can also reveal

the effect of shear deformation in an explicit manner.

In recent years Wang and his co-researchers (see Wang et al., 2001 and references therein) have de-

veloped relationships connecting the solutions of shear deformation plate theories to those of the classical

plate theory. As the thin plate solutions are available in textbooks, these relationships provide an efficient

and quick way to determine the solutions based on shear deformation theories. However, so far the bending
relationships have been specifically determined for various plate shapes (circular, rectangular, sectorial,

annular sectorial and polygonal), boundary conditions (Navier- and Levy-types of boundary conditions)

and different shear deformable plate theories (Mindlin, Reissner and Levinson plate theories). Since the

existing relationships are valid for a particular plate problem and a particular theory (see Wang et al., 1999,

2001; Reddy et al., 2001; Lee et al., 2002), this poses an undesirable computation inefficiency if one were to

compare the solutions provided by various shear deformable plate theories.

The present study overcomes the above shortcoming by furnishing the bending relationships in a ca-

nonical form with constants that can be specialized readily for the different plate theories. Existing bending
relationships are shown to be special cases of those presented here. Additional analytical solutions of plate

problems previously not reported through relationships, such as simply supported plates with edge mo-

ments and clamped plates with transverse loads are solved in this study and the numerical results are

verified with existing analytical results or with those computed using the commercial finite element soft-

ware, ABAQUS (2001). To aid the use of bending relationships for readers, specialized relationships de-

veloped for the plate problems treated in this study have been compiled in Appendix A, with the

corresponding thin plate solutions given in Appendix B.

2. Governing equations

Consider the bending of an isotropic and homogeneous plate subjected to a transverse load qðx; yÞ. The
governing equations of equilibrium according to the classical plate theory, the first-order shear deformation
theory, the Reissner plate theory (see Panc, 1975; Reddy, 1999) and the Levinson plate theory (1980) are

given by

1 The order of a plate theory refers to the order of the transverse coordinate z in the expansion of the displacement field.
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oQx

ox
þ oQy

oy
¼ �qðx; yÞ; ð2:1aÞ

oMxx

ox
þ oMxy

oy
¼ Qx; ð2:1bÞ

oMyy

oy
þ oMxy

ox
¼ Qy ; ð2:1cÞ

where Qx and Qy are the transverse shear forces per unit length while Mxx, Myy and Mxy the moments per unit

length.

Levinson (1980) has adopted the above set of equilibrium equations in his formulation of a third-order

plate theory but the equations are variationally not consistent with the assumed displacement field.

Therefore the Levinson plate theory has been perceived by many as being variational inconsistent and has
prompted several discussion on its correctness in the open literature (Levinson, 1987; Hutchinson, 1987;

Rychter, 1987). A variational consistent third-order shear deformation plate theory has been developed by

Reddy (1984). It requires the introduction of higher-order stress resultants that are physically difficult to

interpret.

3. Shear deformation plate theories

Although the equilibrium equations in Eqs. (2.1) are valid for various theories, the stress resultants (Mxx,

Myy , Mxy , Qx and Qy) in each theory are related to the generalized displacements differently. One can

however express the stress resultants for the Mindlin, Reissner and Levinson plate theories in terms of the

displacements in the following canonical form:

MH
xx ¼ D A

o/H
x

ox

 "
þ m

o/H
y

oy
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� ð1�AÞ o2wH

ox2

�
þ m

o2wH

oy2

�#
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; ð3:1aÞ
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x

ox
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oy2

�
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ox2
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1
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x
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 "
þ
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!
� 2ð1�AÞ o2wH
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� �#
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x

�
þ owH

ox

�
; ð3:1dÞ

QH
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y

�
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oy

�
; ð3:1eÞ

MH ¼ D A
o/H

x

ox

 "
þ
o/H

y

oy

!
� ð1�AÞr2wH

#
þ 2Bq
1� m2

; ð3:1fÞ

where the superscript H denotes the shear deformable plate quantities, h is the plate thickness, D is the

plate flexural rigidity, G is the shear modulus and m is the Poisson ratio. The variables w, /x and /y in
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Eqs. (3.1a–f) are the kinematic displacements assumed for bending by the various plate theories which will

be characterized separately below and M ð¼ ðMxx þMyyÞ=ð1þ mÞÞ is the Marcus moment or moment sum

(Marcus, 1932). The shear coefficient Ks and the constants A and B will be defined for the respective plate

theories as follows.
The Mindlin plate theory. In the Mindlin plate theory, w is taken to be the mid-plane transverse dis-

placement while /x and /y represent the normal rotations about the y- and x-axes, respectively. The para-
meters A, B and Ks have the values

A ¼ 1; B ¼ 0; Ks ¼ j2; ð3:2Þ

where j2 is the Mindlin shear correction factor that is dependent on the plate loading, geometrical and

boundary conditions. Generally for isotropic plates, it has commonly been taken as 5/6.

The Reissner plate theory. Unlike the Mindlin and Levinson plate theories, the Reissner plate theory is

derived through a priori assumption of stress distributions and one obtains the displacement kinematics, via

matching the work done of the stress through the plate thickness with that of an equivalent force (Reissner,

1945, 1947). As a result, w is the weighted average transverse plate deflection while /x and /y are the

equivalent normal rotations about the y- and x-axes, respectively. For the theory, the parameters A, B and

Ks take on the values of

A ¼ 1; B ¼ h2m
10

; Ks ¼
5

6
: ð3:3Þ

The Levinson plate theory. The displacement field hypothesized by Levinson in his formulation belongs

to that of a third-order plate theory while maintaining the transverse inextensibility; here, it is to be re-

marked that all the theories concerned in this study, including the Kirchhoff plate theory, retains such a

hypothesis. With a cubic polynomial representation of the transverse coordinate in the displacement field,

the normal to the mid-plane is allowed to warp during deformation in a non-linear fashion with zero ro-
tation at both free surfaces. Therefore, /x and /y are the rotations of the warped normals about the y- and x-
axes, respectively, while w denotes the mid-plane displacement (Levinson, 1987). The parameters A, B and

Ks for the Levinson plate theory become

A ¼ 4

5
; B ¼ 0; Ks ¼

5

6
: ð3:4Þ

Using Eqs. (3.1a–c) and (3.1f), the shear forces QH
x and QH

y can also be determined from the equilibrium

equations, Eqs. (2.1b) and (2.1c), respectively, in terms of the moment sum as

QH
x ¼ oMH

ox
þ 1

2
Dð1� mÞ A
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oy
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oy

 "
�
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ox
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QH
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ox
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�
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ox

!#
� B
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oy

: ð3:5bÞ

Using Eqs. (3.5a,b) and (2.1a), one can now establish the first governing equation for the bending of

thick plates as

r2 MH

�
� B

1þ m
q
�

¼ �q: ð3:6Þ

Similarly, from Eqs. (3.1d), (3.1e), (3.1f) and (2.1a), the second thick plate governing equation is written
as
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KsGh r2wH

�
þMH

D

�
¼ � 1

�
� Bc2

1þ m

�
q; ð3:7Þ

where

c2 ¼ 2KsGh
Dð1� mÞ ¼

12Ks

h2
:

By differentiating Eqs. (3.5a) and (3.5b) with respect to y and x, respectively, and combining with Eqs.
(3.1d) and (3.1e) to eliminate the transverse deflection wH , one arrives at the last essential governing

equation for thick plates

r2 o/H
x

oy

 
�
o/H

y

ox

!
¼ c2

o/H
x

oy

 
�
o/H

y

ox

!
: ð3:8Þ

With a sixth-order system of governing differential equations for the concerned shear deformable plate

theories, it will be necessary to have a set of six boundary conditions for unique solutions. Hence along a

plate boundary, the conditions to be imposed for each support type are

• simply supported edge:

wH ¼ MH
nn ¼ /H

s ¼ 0; ð3:9Þ

• clamped edge:

wH ¼ /H
n ¼ /H

s ¼ 0; ð3:10Þ

• free edge:

MH
nn ¼ MH

ns ¼ QH
n ¼ 0; ð3:11Þ

where n is the outward normal direction to the plate boundary and s the tangential direction.

4. Kirchhoff plate theory

For the bending of thin plates, the Kirchhoff stress resultant–displacement relationships are given as

follows:

MK
xx ¼ �D

o2wK

ox2

�
þ m

o2wK

oy2

�
; ð4:1aÞ

MK
yy ¼ �D

o2wK

oy2

�
þ m

o2wK

ox2

�
; ð4:1bÞ

MK
xy ¼ �Dð1� mÞ o2wK

oxoy

� �
; ð4:1cÞ

where the superscript K denotes the Kirchhoff plate quantities. As known, the normality assumption made
in the Kirchhoff plate theory will result in zero transverse shear strains, thereby ignoring the transverse

shear deformation. As a result, the Kirchhoff shear forces computed by the constitutive relations will be
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zero. Thus to compute shear forces for thin plates, one will have to resort to the conditions of equilibrium,

Eqs. (2.1b) and (2.1c) to give

QK
x ¼ �D

o

ox
ðr2wKÞ; QK

y ¼ �D
o

oy
ðr2wKÞ: ð4:2a; bÞ

Introducing the moment sum M, the expressions for the Kirchhoff shear forces can be simplified to

QK
x ¼ oMK

ox
; QK

y ¼ oMK

oy
; ð4:3a; bÞ

where MK ¼ �Dr2wK . Note that the Kirchhoff stress resultants in Eqs. (4.1)–(4.3) can also be obtained

from Eqs. (3.1) and (3.5) by setting A ¼ B ¼ 0.

The governing equation for the bending of thin plates can be established by substituting Eqs. (4.3a) and

(4.3b) into Eq. (2.1a)

r2MK ¼ �q ) Dr4wK ¼ q: ð4:4a; bÞ
From Eq. (4.4b), one can see that the governing differential equation of the classical thin plate theory is

of fourth order and will hence require a total of four independent boundary conditions for solutions. As

such, the Kirchhoff boundary conditions to be specified for each support type along a plate edge are defined
as follows:

• simply supported edge:

wK ¼ MK
nn ¼ 0; ð4:5Þ

• clamped edge:

wK ¼ owK

on
¼ 0; ð4:6Þ

• free edge:

MK
nn ¼ V K

n ¼ 0; ð4:7Þ

where V K
n ð¼ QK

n þ ðoMK
ns=osÞÞ is the effective shear force. As mentioned by Reissner (1985), the number of

Kirchhoff boundary conditions especially along a free plate edge poses a boundary paradox, as opposed to
the common engineering knowledge that there should be three natural boundary conditions along such a

plate edge, i.e., vanishing bending and twisting moments, as well as shear force. To remove such a paradox

for this case, a contraction of two boundary conditions into one has been made to introduce the effective

shear force using the variational approach.

5. Relationships between shear deformation and classical theories

Based on the order of the governing equation(s) of the plate theories, it is evident that it is comparatively

easier to seek solutions using the thin plate theory. Also owing to the long existence of the Kirchhoff plate

theory, thin plate solutions have been well-documented in many standard texts on plate problems like

Timoshenko and Woinowsky-Krieger (1959), Szilard (1974), Panc (1975), Mansfield (1989) and Reddy

(1999). As much as it is important to model moderately thick plates more accurately using the shear de-
formable plate theories, it has been mathematically difficult to develop thick plate solutions analytically.

Hence, to have bending relationships that can predict thick plate solutions using the corresponding thin
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plate results provides an attractive option as these bending relationships will also help engineers and re-

searchers to elucidate the significance and effect of transverse shear deformation.

This section will illustrate the procedures how the solutions of a shear deformable plate theory can be

related to the results of the thin plate theory. First by the analogy of load equivalence, one may express a
relationship for the moment sum by setting Eq. (3.6) equal to (4.4a) and then solving the Laplace equation,

r2 MH

�
� B

1þ m
q
�

¼ r2MK ) MH ¼ MK þ B

1þ m
qþ Dr2UH ; ð5:1a; bÞ

where UH is an intrinsic plate function that is strictly bi-harmonic, i.e.,

r4UH ¼ 0: ð5:2Þ
Substituting Eqs. (4.4a) and (5.1b) into Eq. (3.7) will furnish the Kirchhoff-shear-deformable deflection

relationship which is

wH ¼ wK þ 1

KsGh
1

�
�Bc2

2

�
MK � UH þ WH ; ð5:3Þ

where WH is another intrinsic plate function that will satisfy the Laplace equation

r2WH ¼ 0: ð5:4Þ
For the differential equation given in Eq. (3.8), one can express the solution as XH that will constitute the

last of the three intrinsic plate functions for all the bending relationships

r2XH ¼ c2XH ; XH ¼ o/H
x

oy
�
o/H

y

ox
: ð5:5a; bÞ

In view of Eqs. (3.1d), (3.1e), (3.5a), (3.5b), (4.3a), (4.3b), (5.1b), (5.3) and (5.5b) and by a series of
algebraic manipulation, the rotation–slope relationships are determined as

/H
x ¼ � owK

ox
� 1

KsGh
1

�
� 1

A
�Bc2

2

�
QK

x þ o

ox
D

A
r2UH

�
þ UH � WH

�
þ 1

c2
oXH

oy
; ð5:6aÞ

/H
y ¼ � owK

oy
� 1

KsGh
1

�
� 1

A
�Bc2

2

�
QK

y þ o

oy
D

A
r2UH

�
þ UH � WH

�
� 1

c2
oXH

ox
; ð5:6bÞ

where

D ¼ D
KsGh

: ð5:6cÞ

Finally for the stress resultant relationships, one can substitute Eqs. (5.3), (5.6a) and (5.6b) into Eqs.

(3.1a–e) to write

MH
xx ¼ MK

xx �B
oQK

y

oy
� Dð1� mÞ oK

�

oy
þ Dr2UH ; ð5:7aÞ

MH
yy ¼ MK

yy �B
oQK

x

ox
� Dð1� mÞ oK

þ

ox
þ Dr2UH ; ð5:7bÞ

MH
xy ¼ MK

xy þB
oQK

y

ox
þ 1

2
Dð1� mÞ oKþ

oy

�
þ oK�

ox

�
; ð5:8Þ
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QH
x ¼ QK

x þ D
o

ox
ðr2UH Þ þ 1

2
Dð1� mÞ A

oXH

oy

� �
; ð5:9aÞ

QH
y ¼ QK

y þ D
o

oy
ðr2UHÞ � 1

2
Dð1� mÞ A

oXH

ox

� �
; ð5:9bÞ

where

Kþ ¼ o

ox
ðDr2UH þ UH � WH Þ þA

c2
oXH

oy
; ð5:10aÞ

K� ¼ o

oy
ðDr2UH þ UH � WH Þ �A

c2
oXH

ox
: ð5:10bÞ

6. Intrinsic plate functions for various plate problems

In general, the Kirchhoff-shear-deformable plate bending relationships can be specialized to any plate

problem by first determining the corresponding intrinsic plate functions that comply with the plate geo-

metry and basic boundary conditions. For the mathematical requirement, these intrinsic plate functions will

further contain a total of six constants of integration that can be established using the rest of the plate

boundary conditions to completely define the plate problem. Herein by using L�eevy�s proposed method of
solutions, we shall look into three basic plate problems to study the effect of transverse shear deformation

using the above-derived bending relationships. These three basic plate problems are:

(a) simply supported rectangular plates;

(b) rectangular plates with two opposite simply supported edges;

(c) clamped rectangular plates.

Particularly for plate problems of type (b), the corresponding intrinsic plate functions and the associated
constants have appeared before in the works of Wang et al. (1999, 2001), Reddy et al. (2001) and Lee et al.

(2002); the authors however wish to present these quantities in a generic form for a more general imple-

mentation. Else for plate problems of types (a) and (c), the analysis of thick plates using the current ap-

proach have hitherto not been presented.

6.1. Simply supported rectangular plates (SSSS)

For a rectangular plate that is simply supported along y ¼ �b=2 and x ¼ �a=2 (as shown in Fig. 1), the

types of loading considered herein are distributed bending moments along two opposite plate edges. The

results of such plate problem will provide the basis of solutions for clamped rectangular plates by ensuring a

priori that the distributed moment applied to the simply supported edges of a transversely loaded plate will

result in zero normal rotation.

6.1.1. Distributed moments along y ¼ �b=2
In view of the plate loading and support conditions and assuming symmetrical bending of plates about

the x-axis ðMyy jy¼b=2 ¼ Myy jy¼�b=2Þ, one can obtain the corresponding intrinsic plate functions using L�eevy�s
proposed method of solutions as
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UH ¼
X1
m¼1

y
2am

C1m sinh amy
� �

cos amx;

WH ¼
X1
m¼1

ðC2m cosh amyÞ cos amx;

XH ¼
X1
m¼1

ðC3m sinh kmyÞ sin amx;

ð6:1Þ

where k2
m ¼ a2

m þ c2 and am ¼ mp=a. For the boundary conditions along x ¼ �a=2, the index m is restricted

to odd integers.

Now to determine the constants of integration, the boundary conditions along y ¼ �b=2 are imposed as

wH ¼ wK ¼ 0; /H
x ¼ owK

ox
¼ 0; MH

yy ¼ MK
yy : ð6:2Þ

From Eqs. (5.3), (5.6a), (5.7b), (6.1) and (6.2), the constants can be solved as

C1m ¼ 0;

C2m ¼ � 1

KsGh
sech

amb
2

1

�
�Bc2

2

�
MK

mjy¼b=2;

C3m ¼ 1

KsGh
sech

kmb
2

c2am

Akm

� �
MK

mjy¼b=2:

ð6:3Þ

Now if the case of anti-symmetrical bending of plate about x-axis, i.e., ðMyyÞy¼b=2 ¼ �ðMyyÞy¼�b=2 is

considered, the intrinsic plate functions will become

UH ¼
X1
m¼1

y
2am

C1m cosh amy
� �

cos amx;

WH ¼
X1
m¼1

ðC2m sinh amyÞ cos amx;

XH ¼
X1
m¼1

ðC3m cosh kmyÞ sin amx:

ð6:4Þ

(a) (b)

Fig. 1. Simply supported rectangular plate with edge distributed moments.
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With the consideration of the boundary conditions as shown in Eq. (6.2), the constants are established as

C1m ¼ 0;

C2m ¼ � 1

KsGh
cosech

amb
2

1

�
�Bc2

2

�
MK

mjy¼b=2;

C3m ¼ 1

KsGh
cosech

kmb
2

c2am

Akm

� �
MK

mjy¼b=2;

ð6:5Þ

where MK
m (defined as MK ¼

P
MK

m cos amx) can be computed from Eqs. (B.1) and (B.2d) or (B.3d). If one
were to substitute the intrinsic plate functions with the evaluated constants into the deflection relationship

Eq. (5.3) and together with the corresponding thin plate solution given in Eqs. (B.2) and (B.3), it can be

shown for both cases of symmetrically and anti-symmetrically applied edge moments that

wH ¼ wK : ð6:6Þ

Eq. (6.6) essentially applies to all three shear deformable plate theories considered; however, the rotations

and stress resultants will differ from the corresponding thin plate solutions.

6.1.2. Distributed moments along x ¼ �a=2
For distributed moments symmetrically applied along x ¼ �a=2, the corresponding intrinsic plate

functions are

UH ¼
X1
n¼1

x
2bn

D1n sinh bnx
� �

cos bny;

WH ¼
X1
n¼1

ðD2n cosh bnxÞ cos bny;

XH ¼
X1
n¼1

ðD3n sinh#nxÞ sin bny;

ð6:7Þ

where #2
n ¼ b2

n þ c2 and bn ¼ np=b. Here, the index n is restricted to odd integers to comply with the
boundary conditions along y ¼ �b=2.

The boundary conditions at x ¼ �a=2 for the problem will be

wH ¼ wK ¼ 0; /H
y ¼ owK

oy
¼ 0; MH

xx ¼ MK
xx: ð6:8Þ

Now by substituting Eqs. (6.7) and (6.8) into Eqs. (5.3), (5.6b) and (5.7a), one obtains

D1n ¼ 0;

D2n ¼ � 1

KsGh
sech

bna
2

1

�
�Bc2

2

�
MK

n jx¼a=2;

D3n ¼ � 1

KsGh
sech

#na
2

c2bn

A#n

� �
MK

n jx¼a=2:

ð6:9Þ

Similarly, for the case of anti-symmetrically applied edge moments along x ¼ �a=2, the intrinsic plate

functions are
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UH ¼
X1
n¼1

x
2bn

D1n cosh bnx
� �

cos bny;

WH ¼
X1
n¼1

ðD2n sinh bnxÞ cos bny;

XH ¼
X1
n¼1

ðD3n cosh#nxÞ sin bny;

ð6:10Þ

and the corresponding constants evaluated using the boundary conditions in Eq. (6.8) are

D1n ¼ 0;

D2n ¼ � 1

KsGh
cosech

bna
2

1

�
�Bc2

2

�
MK

n jx¼a=2;

D3n ¼ � 1

KsGh
cosech

#na
2

c2bn

A#n

� �
MK

n jx¼a=2;

ð6:11Þ

where MK
n (given as MK ¼

P
MK

n sin bny) can be calculated using Eqs. (B.4) and (B.5d) or (B.6d). As

expected in both of these plate problems, the thick plate deflections for the three shear deformable plate

theories will also be the same as the thin plate results.

6.2. Rectangular plates with two opposite simply supported edges

Consider a rectangular plate of length a and width b, that is simply supported along the two opposite

edges ðx ¼ 0; aÞ, as shown in Fig. 2. In view of the plate problem and adopting L�eevy�s proposed solutions,

the intrinsic plate functions can be established as

UH ¼
X1
m¼1

y
2am

ðC1m cosh amy
	

þ C2m sinh amyÞ


sin amx;

WH ¼
X1
m¼1

ðC3m cosh amy þ C4m sinh amyÞ sin amx;

XH ¼
X1
m¼1

ðC5m sinh kmy þ C6m cosh kmyÞ cos amx;

ð6:12Þ

where k2
m ¼ a2

m þ c2 and am ¼ mp=a.

Fig. 2. Rectangular plate with two opposite simply supported edges.
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6.2.1. Clamped edges along y ¼ �b=2 (SCSC)

Now consider the case when the other two edges of the considered rectangular plate are clamped, one

will impose the following boundary conditions along the edges ðy ¼ �b=2Þ:

wH ¼ wK ¼ 0; /H
y ¼ owK

oy
¼ 0; /H

x ¼ 0: ð6:13Þ

Hence by substituting Eqs. (6.12) and (6.13) into Eqs. (5.3), (5.6a) and (5.6b), the constants can be

determined as

C1m ¼
am km coth

amb
2
� am coth

kmb
2

� �
q�
m � n�

m coth kmb
2


 �
þ kmgþ

m

b
4
coth amb

2
� am

D
A

� �
� 1

2am

h i
km cosh

amb
2
� kmb

4
� a2

m
D
A

� �
coth kmb

2


 �
sinh amb

2

n o ;

C2m ¼
am km tanh

amb
2
� am tanh

kmb
2

� �
qþ
m � nþ

m tanh kmb
2


 �
þ kmg�

m

b
4
tanh amb

2
� am

D
A

� �
� 1

2am

h i
km sinh

amb
2
� kmb

4
� a2

m
D
A

� �
tanh kmb

2


 �
cosh amb

2

n o ;

C3m ¼ sech
amb
2

b
4am

C2m sinh
amb
2

�
� qþ

m

�
;

C4m ¼ cosech
amb
2

b
4am

C1m cosh
amb
2

�
� q�

m

�
;

C5m ¼ � c2

km

� �
sech

kmb
2

am
D

A

� �
C2m cosh

amb
2

	
þ amqþ

m þ nþ
m



;

C6m ¼ � c2

km

� �
cosech

kmb
2

am
D

A

� �
C1m sinh

amb
2

	
þ amq�

m þ n�
m



;

ð6:14Þ

where

q�
m ¼ 1

2KsGh
1

�
�Bc2

2

�
ðMK

mjy¼b=2 �MK
mjy¼�b=2Þ;

n�
m ¼ � 1

2KsGh
1

�
� 1

A
�Bc2

2

�
ðQK

xmjy¼b=2 � QK
xmjy¼�b=2Þ;

g�
m ¼ � 1

2KsGh
1

�
� 1

A
�Bc2

2

�
ðQK

ymjy¼b=2 � QK
ymjy¼�b=2Þ;

ð6:15Þ

and MK
m, Q

K
xm and QK

ym can be determined using Eqs. (B.7), (B.8) and (B.9b).

6.2.2. Free edges along y ¼ �b=2 (SFSF)

For the case of free edges along y ¼ �b=2, the boundary conditions to be defined are

MH
yy ¼ MK

yy ¼ 0; QH
y ¼ V K

y ¼ 0; MH
xy ¼ 0: ð6:16Þ
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In view of Eqs. (6.12), (6.16), (5.7b), (5.8) and (5.9b), one obtains the constants as

C1m ¼
d�
m þ km tanh

kmb
2
� 1

2am
ðk2

m þ a2
mÞ tanh amb

2

h i
qþ
m þ ðnþ

m þ gþ
mÞ tanh amb

2

b
4
� kmD tanh kmb

2

� �
am cosh

amb
2
� amb

4
tanh amb

2
� a2

mD� 3þm
2ð1�mÞ

h i
sinh amb

2

n o ;

C2m ¼
dþ
m þ km coth

kmb
2
� 1

2am
ðk2

m þ a2
mÞ coth amb

2

h i
q�
m þ ðn�

m þ g�
mÞ coth amb

2

b
4
� kmD coth kmb

2

� �
am sinh

amb
2
� amb

4
coth amb

2
� a2

mD� 3þm
2ð1�mÞ

h i
cosh amb

2

n o ;

C3m ¼ 1

a2
m

cosech
amb
2

amb
4

cosh
amb
2

	�
� 1þ m
2ð1� mÞ sinh

amb
2



C2m � 1

2am
ðk2

m þ a2
mÞq�

m þ n�
m þ g�

m

�
;

C4m ¼ 1

a2
m

sech
amb
2

amb
4

sinh
amb
2

	�
� 1þ m
2ð1� mÞ cosh

amb
2



C1m � 1

2am
ðk2

m þ a2
mÞqþ

m þ nþ
m þ gþ

m

�
;

C5m ¼ � c2

A
cosech

kmb
2

DC2m sinh
amb
2

�
þ q�

m

am

�
;

C6m ¼ � c2

A
sech

kmb
2

DC1m cosh
amb
2

�
þ qþ

m

am

�
;

ð6:17Þ
where

q�
m ¼ 1

2KsGh
ðQK

ymjy¼b=2 � QK
ymjy¼�b=2Þ;

n�
m ¼ 1

2Dð1� mÞ ðM
K
xymjy¼b=2 �MK

xymjy¼�b=2Þ;

g�
m ¼ am

2KsGh
Bc2

2

� �
ðQK

ymjy¼b=2 � QK
ymjy¼�b=2Þ;

d�
m ¼ � am

2KsGh
Bc2

2

� �
ðQK

xmjy¼b=2 � QK
xmjy¼�b=2Þ;

ð6:18Þ

and Eqs. (B.7), (B.8) and (B.9c) shall be used to establish MK
xym, Q

K
xm and QK

ym.

6.3. Clamped rectangular plates (CCCC)

Treating the clamped plate problem, as shown in Fig. 3, it is assumed that the bending of the plate is to

be symmetrical about both axes. To obtain the solutions for clamped plates, the approach will be to su-

perimpose the solutions of simply supported plates under transverse loads and the corresponding solutions

for simply supported plates with distributed moments along the plate edges.

In view of the symmetrical bending of plate, the intrinsic plate functions are

UH ¼
X1
m¼1

y
2am

C1m sinh amy
� �

cos amxþ
X1
n¼1

x
2bn

D1n sinh bnx
� �

cos bny;

WH ¼
X1
m¼1

ðC2m cosh amyÞ cos amxþ
X1
n¼1

ðD2n cosh bnxÞ cos bny;

XH ¼
X1
m¼1

ðC3m sinh kmyÞ sin amxþ
X1
n¼1

ðD3n sinh#nxÞ sin bny;

ð6:19Þ
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where k2
m ¼ a2

m þ c2 and am ¼ mp=a while #2
m ¼ b2

n þ c2 and bn ¼ np=b and the indices m and n only take odd
integers. It is to note that the intrinsic plate functions for the present plate problem can be established by

simply summing up the corresponding functions of the transversely loaded simply supported plates which

are identically zero (Wang et al., 1999) and those of simply supported plates with distributed edge moments,

Eqs. (6.1) and (6.7).

With Eqs. (5.3), (5.6a), (5.6b) and (6.19), one can write the specialized deflection and rotation–slope

relationships of a clamped plate as

wH ¼ wK þ 1

�
�Bc2

2

�
MK

KsGh
þ
X1
m¼1

C2m cosh amy
�

� y
2am

C1m sinh amy
�
cos amx

þ
X1
n¼1

D2n cosh bnx
�

� x
2bn

D1n sinh bnx
�
cos bny; ð6:20Þ

/H
x ¼ � owK

ox
� 1

�
� 1

A
�Bc2

2

�
QK

x

KsGh
�
X1
m¼1

am
y

2am
C1m sinh amy

	�
þ D

A
C1m

�
� C2m

�
cosh amy




� km

c2
C3m cosh kmy

�
sin amxþ

X1
n¼1

bn
D

A
D1n

 "(
� D2n þ

1

2b2
n

D1n

!
sinh bnxþ

x
2bn

D1n cosh bnx

þ 1

c2
D3n sinh#nx

#)
cos bny; ð6:21aÞ

/H
y ¼ � owK

oy
� 1

�
� 1

A
�Bc2

2

�
QK

y

KsGh
�
X1
n¼1

bn
x
2bn

D1n sinh bnx
	�

þ D

A
D1n

�
� D2n

�
cosh bnx




þ #n

c2
D3n cosh#nx

�
sin bny þ

X1
m¼1

am
D

A
C1m

�	�
� C2m þ 1

2a2
m

C1m

�
sinh amy

þ y
2am

C1m cosh amy �
1

c2
C3m sinh kmy


�
cos amx: ð6:21bÞ

To satisfy the boundary edge conditions of a clamped plate using Eqs. (3.10), (4.6), (6.20), (6.21a) and
(6.21b), the constants, Cim and Din ði ¼ 1; 2; 3Þ are determined as

Fig. 3. Clamped rectangular plate.

3052 G.T. Lim, J.N. Reddy / International Journal of Solids and Structures 40 (2003) 3039–3067
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C2m ¼ sech
amb
2

C1m
b

4am
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amb
2

"
� 1

�
�Bc2

2

�
MK

mjy¼b=2

KsGh

#
; ð6:22cÞ

C3m ¼ c2

km
sech

kmb
2

am
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A
C1m cosh

amb
2
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þ 1

�
�Bc2

2

�
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mjy¼b=2

KsGh
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þ 1

�
� 1
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�
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ð6:22dÞ

D2n ¼ sech
bna
2

D1n
a
4bn

sinh
bna
2

"
� 1

�
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2

�
MK

n jx¼a=2

KsGh

#
; ð6:22eÞ

D3n ¼ � c2

#n
sech

#na
2
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D

A
D1n cosh
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"(
þ 1

�
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)
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ð6:22fÞ

where MK
m, Q

K
xm and QK

ym are evaluated from Eqs. (B.1) and (B.2) and MK
n , Q

K
xn and QK

yn are evaluated from

Eqs. (B.4) and (B.5) while
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gmn ¼ � 1

ða2
m þ b2

nÞ
2
þ 2dmn

Að1� mÞ and dmn ¼
1

ða2
m þ b2

nÞða2
m þ #2

nÞ
:

It should be noted that the expressions in Eqs. (6.22a–f) are not in an explicit form in the sense that the

evaluation of C1m and D1n is dependent on one another. This will pose a difficulty as such a dependency of

the constants requires one to solve an infinite system of equations. A commonly adopted approach is to
reduce it to a finite system of equations by considering only a finite number of terms. Such an approxi-

mation of the system will then raise several mathematical issues such as the convergence of solutions and

their uniqueness. These issues were addressed by Meleshko (1997) in his findings where he reported that for

thin clamped plate solutions, the resulting infinite system of equations is regular and will therefore have a

set of unique and bounded solutions. Furthermore, the solution of the reduced finite system using the

method of successive reduction will be convergent, tending towards the unique solution of the infinite

system. While the proof is not provided in this study, numerical studies will nonetheless be carried out to

ensure the convergence and accuracy of the solutions.

7. Results and discussion

With the intrinsic plate functions and their corresponding constants determined for the respective plate

problems, one can now utilize the bending relationships as derived earlier to generate thick plate results. As

discussed earlier, the convergence of the series solution will be of concern for the case of clamped plates.

Table 1 shows the numerical results from a convergence study to determine the appropriate number of

terms needed for thick plate solutions with an acceptable degree of precision using the three different shear
deformable plate theories. The plate problem concerned herein is a clamped square plate under uniformly

distributed load q0. It is clear that the results for the maximum deflection show faster convergence than

those for the bending moments and a good precision can be noted in the solutions when thirty or more

terms have been adopted for the series. With that from here on, the number of terms that will be used for

computation is 20, unless specified otherwise.

To verify the accuracy or correctness of the relationships, available analytical results found in the open

literature and those generated by ABAQUS will be used for comparison. Table 2 presents the maximum

transverse deflections of square Mindlin plates of various boundary conditions and plate thicknesses
subjected to uniformly distributed load q0 computed by the bending relationships and ABAQUS. It is to

note that a mesh size of 40 by 40 thick plate (S8R) elements has been used for generating ABAQUS so-

lutions. One can see from the table that there is an excellent agreement between the present results and

those furnished by ABAQUS.

Now adopting the Reissner plate theory, transverse deflections and the shear forces computed by the

relationships for SFSF thick plates have been tabulated in Table 3, together with the solution as given by

Salerno and Goldberg (1960). A one-to-one correspondence between the two sets of results is observed.

Levinson plate results generated via the bending relationships had already been presented in the previous
work of the authors (Reddy et al., 2001) and compared with those computed by Levinson and Cooke (1983)

and Cooke and Levinson (1983) for all-round simply supported plates and plates with two opposite simply

supported edges. In that study, the solutions for simply supported plates had matched up very well while

the results for the second plate problem however showed notable dissimilarity. It was shown then that there

are missing terms in their governing equations, leading to erroneous numerical results thereafter. For a

more detailed discussion of the topic, readers may refer to the above cited references.

To review the differences of the predictions for the thick plate results of the three shear deformable plate

theories, maximum normalized transverse deflections of clamped rectangular plates under a uniformly
distributed load have been furnished in Table 4. From Table 4, one can see that of the three, the Levinson
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plate theory consistently predicts the highest deflections for all cases; the most notable differences are those

for the very thick plates. This is to be expected since in the Levinson plate theory, the formulation allows

the normals to the mid-plane to warp through the plate thickness rendering the plate to be relatively

flexible. However, the more interesting observation is the stiffer solution yielded by the Reissner plate

theory which allows the consideration of the normal stress (rzz) and the plate normal to deform; this marks
the distinct differences between the Reissner and Mindlin plate theories and one can refer to Wang et al.

(2001) and Lee et al. (2002) for more detailed discussion. The stiffer behavior of the Reissner plate results

Table 1

Convergence studies for the thick plate results of clamped square plate under uniformly distributed load q0 for the various shear

deformable plate theories (h=a ¼ 0:1, Ks ¼ 5=6, m ¼ 0:3)

No. of terms ðm; nÞ ð�wwmaxÞa ðMxxÞa

Mindlin Reissner Levinson Mindlin Reissner Levinson

5 1.5057 1.5046 1.5626 5.0582 5.0462 5.0268

10 1.5047 1.5042 1.5624 5.0740 5.0620 5.0402

20 1.5046 1.5044 1.5628 5.0738 5.0614 5.0397

30 1.5046 1.5045 1.5630 5.0740 5.0615 5.0398

40 1.5046 1.5045 1.5630 5.0742 5.0616 5.0399

50 1.5046 1.5045 1.5631 5.0743 5.0616 5.0399

a �wwmax ¼ 1000wð0; 0ÞD=ðq0a4Þ, Mxx ¼ �100Mxxða=2; 0Þ=ðq0a2Þ.

Table 2

Normalized maximum plate deflections ½1000wD=ðq0a4Þ
 of square Mindlin plates with various boundary conditions and plate

thicknesses under uniformly distributed load q0 (A ¼ 1, B ¼ 0; Ks ¼ 5=6, m ¼ 0:3)

h=a SCSC SFSF CCCC

ABAQUS Present results ABAQUS Present results ABAQUS Present results

0.005 1.9179 1.9179 15.0237 15.0237 1.2660 1.2660

0.01 1.9202 1.9202 15.0380 15.0380 1.2679 1.2679

0.05 1.9918 1.9918 15.2165 15.2165 1.3273 1.3273

0.1 2.2087 2.2087 15.6001 15.6001 1.5046 1.5046

0.2 3.0211 3.0211 16.8975 16.8975 2.1722 2.1722

Table 3

Normalized plate results of square Reissner plates (SFSF) with different plate thicknesses under uniformly distributed load q0 (A ¼ 1,

B ¼ h2m=10; Ks ¼ 5=6, m ¼ 0:3)

h=a �wwða=2; a=2Þ Qxð0; 0Þ Qyða=2; a=4Þ
Salerno and

Goldberg (1960)

Present results Salerno and

Goldberg (1960)

Present results Salerno and

Goldberg (1960)

Present results

0.005 15.0236 15.0236 4.6343 4.6343 2.6503 2.6503

0.01 15.0376 15.0376 4.6325 4.6325 2.6651 2.6651

0.05 15.2081 15.2081 4.6167 4.6167 2.7875 2.7875

0.1 15.5677 15.5677 4.5954 4.5954 2.9479 2.9479

0.2 16.7760 16.7760 4.5499 4.5499 3.1617 3.1617

�ww ¼ 1000wD=ðq0a4Þ, Qx ¼ 10Qx=ðq0aÞ, Qy ¼ �100Qy=ðq0aÞ.
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may be attributed to the weighted average approach that has been introduced to give equivalent values of
mid-plane transverse displacement and normal rotations. Nonetheless, these dissimilarities in the formu-

lation for the two plate theories and their results, although small for thin plates, should not be ignored and

hence the two theories should not be treated as the same. To illustrate the variation of the stress resultants

predicted by the three plate theories for clamped plates with various plate aspect ratios (b=a) and plate

Table 4

Maximum normalized plate deflections ½1000wD=ðq0a4Þ
 of a clamped rectangular plate with various plate thickness under uniformly

distributed load q0, specialized for the various shear deformable plate theories (Ks ¼ 5=6, m ¼ 0:3)

h=a b=a ¼ 1:0 b=a ¼ 1:5 b=a ¼ 2:0

MPT RPT LPT MPT RPT LPT MPT RPT LPT

0.005 1.2660 1.2660 1.2661 2.1974 2.1974 2.1976 2.5339 2.5339 2.5341

0.01 1.2679 1.2679 1.2685 2.1999 2.1999 2.2008 2.5366 2.5366 2.5375

0.05 1.3273 1.3272 1.3425 2.2802 2.2801 2.3008 2.6236 2.6235 2.6460

0.1 1.5046 1.5044 1.5628 2.5246 2.5241 2.6050 2.8927 2.8921 2.9814

0.2 2.1722 2.1711 2.3911 3.4610 3.4591 3.7675 3.9473 3.9452 4.2941

MPT¼Mindlin plate theory, RPT¼Reissner plate theory and LPT¼Levinson plate theory.

Table 5

Normalized stress resultants of clamped square plates with various plate thickness under uniformly distributed load q0, specialized for

the various shear deformable plate theories (Ks ¼ 5=6, m ¼ 0:3)

h=a ðMxxÞa ðMxyÞa ðQyÞa

MPT RPT LPT MPT RPT LPT MPT RPT LPT

0.005 5.1332 5.1332 5.1331 0.0007 0.0007 0.0011 44.0202 44.0205 44.0204

0.01 5.1327 5.1326 5.1323 0.0013 0.0014 0.0024 43.9145 43.9150 43.9125

0.05 5.1166 5.1135 5.1072 )0.0507 )0.0456 )0.0469 42.8595 42.8606 42.7887

0.1 5.0738 5.0614 5.0397 )0.1403 )0.1185 )0.1690 41.1982 41.1969 40.9739

0.2 4.9797 4.9299 4.8719 )0.2647 )0.1755 )0.5530 38.1903 38.1796 37.8461

Classical thin plate solution: M
K
xx ¼ 5:1334, M

K
xy ¼ �0:0018, Q

K
y ¼ 44:1193.

aMxx ¼ �100Mxxða=2; 0Þ=ðq0a2Þ, Mxy ¼ 100Mxyða=2; b=2Þ=ðq0a2Þ, Qy ¼ �100Qyð0; b=2Þ=ðq0aÞ.

Table 6

Normalized stress resultants of clamped rectangular plates with various plate thickness under uniformly distributed load q0, specialized
for the various shear deformable plate theories (b=a ¼ 1:5, Ks ¼ 5=6, m ¼ 0:3)

h=a ðMxxÞa ðMxyÞa ðQyÞa

MPT RPT LPT MPT RPT LPT MPT RPT LPT

0.005 7.5661 7.5661 7.5661 0.0010 0.0011 0.0014 46.4041 46.4044 46.4040

0.01 7.5659 7.5658 7.5656 0.0019 0.0020 0.0030 46.2738 46.2744 46.2708

0.05 7.5586 7.5555 7.5514 )0.0532 )0.0475 )0.0491 44.9630 44.9640 44.8717

0.1 7.5343 7.5218 7.5049 )0.1588 )0.1341 )0.1833 42.9585 42.9568 42.6937

0.2 7.4470 7.3969 7.3366 )0.3191 )0.2179 )0.5818 39.5971 39.5854 39.2509

Classical thin plate solution: M
K
xx ¼ 7:5662, M

K
xy ¼ �0:0016, Q

K
y ¼ 46:5255.

aMxx ¼ �100Mxxða=2; 0Þ=ðq0a2Þ, Mxy ¼ 100Mxyða=2; b=2Þ=ðq0a2Þ, Qy ¼ �100Qyð0; b=2Þ=ðq0aÞ.
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thicknesses (h), computed solutions are presented in Tables 5–7. These should serve as references for nu-
merical solutions.

8. Concluding remarks

Presented herein are the canonical bending relationships that allow one to generate thick plate results

for the Mindlin, Reissner and Levinson plate theories using the widely available thin plate solutions.

The bending relationships have been derived for several plate problems like simply supported rectangular

plates subjected to distributed edge moments, rectangular plates with two simply supported edges and

clamped rectangular plates both subjected to uniformly distributed transverse loads. A convergence study

has been carried out to determine the necessary number of terms for attaining an acceptable precision

for the thick plate results. Also, the correctness of the thick plate results furnished by the canonical
bending relationships for the various plate problems had been substantiated by ABAQUS and other exist-

ing results.
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Appendix A. Specialized bending relationships

For the ease of the application of the Kirchhoff-shear-deformable bending relationships derived in the

main text, these relationships have been specialized in this appendix for each of the plate problems being

considered herein this study. Together with the evaluation of the corresponding constants and the thin plate

solutions (as given in Appendix B), these relationships can be readily programmed to generate useful thick

plate results.

Table 7

Normalized stress resultants of clamped rectangular plates with various plate thickness under uniformly distributed load q0, specialized
for the various shear deformable plate theories (b=a ¼ 2:0, Ks ¼ 5=6, m ¼ 0:3)

h=a ðMxxÞa ðMxyÞa ðQyÞa

MPT RPT LPT MPT RPT LPT MPT RPT LPT

0.005 8.2875 8.2875 8.2875 0.0023 0.0023 0.0027 46.2647 46.2650 46.2641

0.01 8.2875 8.2874 8.2873 0.0029 0.0031 0.0040 46.1295 46.1301 46.1258

0.05 8.2860 8.2828 8.2802 )0.0556 )0.0495 )0.0526 44.8010 44.8019 44.7072

0.1 8.2798 8.2672 8.2563 )0.1708 )0.1439 )0.1977 42.7661 42.7643 42.4935

0.2 8.2449 8.1946 8.1479 )0.3478 )0.2367 )0.6043 39.3523 39.3407 38.9945

Classical thin plate solution: M
K
xx ¼ 8:2875, M

K
xy ¼ �0:0005, Q

K
y ¼ 46:3913.

aMxx ¼ �100Mxxða=2; 0Þ=ðq0a2Þ, Mxy ¼ 100Mxyða=2; b=2Þ=ðq0a2Þ, Qy ¼ �100Qyð0; b=2Þ=ðq0aÞ.
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A.1. Simply supported rectangular plates

A.1.1. Distributed moments along y ¼ �b=2

(a) Symmetrical case. Myy jy¼b=2 ¼ Myy jy¼�b=2
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ðA:1Þ

(b) Anti-symmetrical case. Myy jy¼b=2 ¼ �Myy jy¼�b=2

wH ¼ wK þ 1
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ðA:2Þ
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A.1.2. Distributed moments along x ¼ �a=2

(a) Symmetrical case. Mxxjx¼a=2 ¼ Mxxjx¼�a=2

wH ¼ wK þ 1
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(b) Anti-symmetrical case. Mxxjx¼a=2 ¼ �Mxxjx¼�a=2

wH ¼ wK þ 1
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A.2. Rectangular plates with two opposite simply supported edges

Besides the plate problems (SCSC and SFSF plates) treated in Section 6.2, the following bending re-

lationships can be applied to plate problems whereby the boundary conditions along the other two plate
edges can be any combination of free, clamped or simply support:

wH ¼ wK þ 1
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A.3. Clamped rectangular plates

Note that the displacement and rotation–slope relationships are not provided here since they have ap-

peared in the main text, Eqs. (6.20) and (6.21).
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Appendix B. Classical thin plate solutions

In this appendix, the classical plate solutions are provided for one to apply readily to bending rela-

tionships as derived in the earlier section and together with those specialized in Appendix A. The solutions

are furnished for the various plate problems considered wherever available.

B.1. Simply supported rectangular plates

B.1.1. Distributed moments along y ¼ �b=2
In general, the distributed moment applied can be represented in Fourier series as (Timoshenko and

Woinowsky-Krieger, 1959)

M0ðxÞ ¼
X1
m¼1

Em sin
mp
2

cos amx; ðB:1Þ

where Em ¼ 4M0=mp for the particular case of uniformly distributed moment M0ðxÞ ¼ M0.
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(a) Symmetrical case. MK
yy jy¼b=2 ¼ MK

yy jy¼�b=2 ¼ M0ðxÞ
Consider such a symmetry and Eq. (B.1), one can write the deflection and stress resultants as
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(b) Anti-symmetrical case. MK
yy jy¼b=2 ¼ �MK

yy jy¼�b=2 ¼ M0ðxÞ
For this case, the deflection and stress resultants can be derived as
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y ðx; yÞ ¼

X1
m¼1

amEmcosech
amb
2

cosh amy
� �

sin
mp
2

cos amx:

ðB:3Þ

B.1.2. Distributed moments along x ¼ �a=2
Like the previous plate problem, one can express the distributed moment applied using Fourier series as

(Timoshenko and Woinowsky-Krieger, 1959)

M0ðyÞ ¼
X1
n¼1

Fn sin
np
2

cos bny; ðB:4Þ

where Fn ¼ 4M0=np for the case of uniformly distributed moment M0ðyÞ ¼ M0.

(a) Symmetrical case. MK
xxjx¼a=2 ¼ MK

xxjx¼�a=2 ¼ M0ðyÞ
In view of the loading symmetry and Eq. (B.4), the thin plate deflection and stress resultants are given as

wKðx; yÞ ¼ 1

2D

X1
n¼1

sech
bna
2

Fn
b2
n

 !
bna
2

tanh
bna
2

cosh bnx
�

� bnx sinh bnx
�
sin

np
2

cos bny;

MK
xxðx; yÞ ¼

1

2

X1
n¼1

Fnsech
bna
2

2

	�
� ð1� mÞ bna

2
tanh

bna
2



cosh bnx

þ ð1� mÞbnx sinh bnx
�
sin

np
2

cos bny;

MK
yyðx; yÞ ¼

1

2

X1
n¼1

Fnsech
bna
2

2m

	�
þ ð1� mÞ bna

2
tanh

bnab
2



cosh bny

� ð1� mÞbnx sinh bny
�
sin

np
2

cos bny;

MKðx; yÞ ¼
X1
n¼1

Fnsech
bna
2

cosh bnx
� �

sin
np
2

cos bny;

MK
xyðx; yÞ ¼

1

2
ð1� mÞ

X1
n¼1

Fnsech
bna
2

bna
2

tanh
bna
2

�	
� 1

�
sinh bnx

� bnx cosh bnx


sin

np
2

sin bny;

QK
x ðx; yÞ ¼

X1
n¼1

bnFnsech
bna
2

sinh bnx
� �

sin
np
2

cos bny;

QK
y ðx; yÞ ¼ �

X1
n¼1

bnFnsech
bna
2

cosh bnx
� �

sin
np
2

sin bny:

ðB:5Þ
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(b) Anti-symmetrical case. MK
xxjx¼a=2 ¼ �MK

xxjx¼�a=2 ¼ M0ðyÞ
For the anti-symmetrical case, the deflection and stress resultants can be furnished as

wKðx; yÞ ¼ 1

2D

X1
n¼1

cosech
bna
2

Fn
b2
n

 !
bna
2

coth
bna
2

sinh bnx
�

� bnx cosh bnx
�
sin

np
2

cos bny;

MK
xxðx; yÞ ¼

1

2

X1
n¼1

Fncosech
bna
2

2

	�
� ð1� mÞ bna

2
coth

bna
2



sinh bnx

þ ð1� mÞbnx cosh bnx
�
sin

np
2

cos bny;

MK
yyðx; yÞ ¼

1

2

X1
n¼1

Fncosech
bna
2

2m

	�
þ ð1� mÞ bna

2
coth

bnab
2



sinh bny

� ð1� mÞbnx cosh bny
�
sin

np
2

cos bny;

MKðx; yÞ ¼
X1
n¼1

Fncosech
bna
2

sinh bnx
� �

sin
np
2

cos bny;

MK
xyðx; yÞ ¼

1

2
ð1� mÞ

X1
n¼1

Fncosech
bna
2

bna
2

coth
bna
2

�	
� 1

�
cosh bnx

� bnx sinh bnx


sin

np
2

sin bny;

QK
x ðx; yÞ ¼

X1
n¼1

bnFncosech
bna
2

cosh bnx
� �

sin
np
2

cos bny;

QK
y ðx; yÞ ¼ �

X1
n¼1

bnFncosech
bna
2

sinh bnx
� �

sin
np
2

sin bny:

ðB:6Þ

B.2. Rectangular plates with two opposite simply supported edges

The thin plate solutions for rectangular plates with two simply supported edges have been well-docu-

mented in many standard texts like Timoshenko and Woinowsky-Krieger (1959), Mansfield (1989) and

Reddy (1999) and they are presented herein for completeness. Much in the same fashion with the applied

edge moments, the applied transverse loading for the considered plate problem can be represented in the

Fourier sine series so long the shape of the loading function remains the same along every section per-

pendicular to the two opposite edges. The transverse loading can be generally written as

q0ðx; yÞ ¼
X1
m¼1

qmðyÞ sin amx; ðB:7Þ

where qmðyÞ ¼ 4q0=mp for the case of uniformly distributed load q0ðx; yÞ ¼ q0. With the transverse loading
given in such form, the deflection and stress resultants can be established as
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wKðx; yÞ ¼ 1

D

X1
m¼1

qmðyÞ
a4
m

1ð þ Am cosh amy þ Bmamy sinh amyÞ sin amx;

MK
xxðx; yÞ ¼ �

X1
m¼1

qmðyÞ
a2
m

f � 1þ 2mBm½ � ð1� mÞAm
 cosh amy � ð1� mÞBmamy sinh amyg sin amx;

MK
yyðx; yÞ ¼ �

X1
m¼1

qmðyÞ
a2
m

f � m þ 2Bm½ þ ð1� mÞAm
 cosh amy þ ð1� mÞBmamy sinh amyg sin amx;

MKðx; yÞ ¼ �
X1
m¼1

qmðyÞ
a2
m

ð � 1þ 2Bm cosh amyÞ sin amx;

MK
xyðx; yÞ ¼ �ð1� mÞ

X1
n¼1

qmðyÞ
a2
m

ðAm½ þ BmÞ sinh amy þ Bmamy cosh amy
 cos amx;

QK
x ðx; yÞ ¼ �

X1
m¼1

qmðyÞ
am

ð1þ 2Bm cosh amyÞ cos amx;

QK
y ðx; yÞ ¼ �

X1
m¼1

qmðyÞ
am

ð2Bm sinh amyÞ sin amx;

ðB:8Þ

where

SSSS plates: Am ¼ �
2þ amb

2
tanh amb

2

2 cosh amb
2

; Bm ¼ 1

2 cosh amb
2

;

SCSC plates: Am ¼ �
1þ amb

2
coth amb

2

cosh amb
2
þ amb

2
cosech amb

2

;

Bm ¼ 1

cosh amb
2
þ amb

2
cosech amb

2

;

SFSF plates: Am ¼
mð1þ mÞ sinh amb

2
� mð1� mÞ amb

2
cosh amb

2

ð3þ mÞð1� mÞ sinh amb
2

cosh amb
2
� ð1� mÞ2 amb

2

;

Bm ¼
mð1� mÞ sinh amb

2

ð3þ mÞð1� mÞ sinh amb
2

cosh amb
2
� ð1� mÞ2 amb

2

:

ðB:9Þ

Note that the solutions presented apply to the coordinate system given in Fig. 2 and one can transform the

coordinate system to that as shown in Fig. 3 by substituting x ¼ �xxþ a=2.
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