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Abstract

In recent years, a series of papers have appeared on algebraic relationships between the solutions (e.g., deflections,
buckling loads and frequencies) of a given higher-order plate theory and the classical plate theory. The bending re-
lationships, for example, can be used to generate the transverse deflection of a plate according to the particular higher-
order theory from the known deflection of the same problem according to the classical plate theory. In the present study
relationships between the bending solutions of several higher-order plate theories and the classical plate theory are
obtained in a canonical form (i.e., one set of relationships contain several theories and they can be specialized to a
specific theory by assigning values to the constants appearing in the relationships). Numerical examples of bending
solutions for rectangular plates with various boundary conditions are presented to show how the relations can be used
to determine the deflections and bending moments for various theories. The relationships are validated by comparing
the numerical results obtained using the relationships for the Mindlin plate theory against those computed using the
ABAQUS finite element program.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical plate theory, also known as the Kirchhoff plate theory (Szilard, 1974; Reddy, 1999), is used
extensively to analyze plates whose length-to-thickness ratio is of the order of 25 or greater (i.e., thin
plates). Bending, buckling and vibration solutions of plates according to the classical plate theory have been
well-documented in many standard textbooks like Timoshenko and Woinowsky-Krieger (1959), Mansfield
(1989) and Reddy (1999). When the plate’s properties are anisotropic and the length-to-thickness ratio is
less than 25, the effect of transverse shear deformation on deflections, buckling loads and frequencies can be
significant, and it is necessary to use theories that account for transverse shear deformation.

There exists a number of plate theories that account for transverse shear strains and stresses and provide
various degrees of refinement to the classical plate theory. The more commonly known refined plate theo-
ries are the Reissner plate theory (Reissner, 1945, 1947), the Mindlin plate theory (Mindlin, 1951) and the
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Levinson plate theory (Levinson, 1980). Except for the Reissner plate theory, the aforementioned plate
theories are developed using an assumed displacement field. The Reissner theory, on the other hand, is
based on an assumed stress field. The Mindlin plate theory is often referred to as a first-order ' shear
deformation plate theory while the Levinson plate theory is a third-order theory. While shear deformable
plate theories more accurately describe the kinematic behavior of thick plates than the classical plate
theory, analytical solutions of shear deformation theories are more difficult to formulate. A limited number
of analytical solutions of the first-order shear deformation plate theory may be found in the textbooks by
Timoshenko and Woinowsky-Krieger (1959) and Reddy (1999, 2002); analytical results to selected plate
problems using the Levinson plate theory were developed by Levinson and Cooke (1983) and Cooke and
Levinson (1983), whereas Salerno and Goldberg (1960) provided analytical solutions of the Reissner plate
theory.

The amount of literature available on analytical solutions of refined theories is hence limited and it is
useful to have relationships that connect solutions of the classical plate theory to those of the available
refined theories so that one can immediately determine the solution of a plate problem according to a shear
deformation theory from the corresponding classical plate theory solution. The relationships can also reveal
the effect of shear deformation in an explicit manner.

In recent years Wang and his co-researchers (see Wang et al., 2001 and references therein) have de-
veloped relationships connecting the solutions of shear deformation plate theories to those of the classical
plate theory. As the thin plate solutions are available in textbooks, these relationships provide an efficient
and quick way to determine the solutions based on shear deformation theories. However, so far the bending
relationships have been specifically determined for various plate shapes (circular, rectangular, sectorial,
annular sectorial and polygonal), boundary conditions (Navier- and Levy-types of boundary conditions)
and different shear deformable plate theories (Mindlin, Reissner and Levinson plate theories). Since the
existing relationships are valid for a particular plate problem and a particular theory (see Wang et al., 1999,
2001; Reddy et al., 2001; Lee et al., 2002), this poses an undesirable computation inefficiency if one were to
compare the solutions provided by various shear deformable plate theories.

The present study overcomes the above shortcoming by furnishing the bending relationships in a ca-
nonical form with constants that can be specialized readily for the different plate theories. Existing bending
relationships are shown to be special cases of those presented here. Additional analytical solutions of plate
problems previously not reported through relationships, such as simply supported plates with edge mo-
ments and clamped plates with transverse loads are solved in this study and the numerical results are
verified with existing analytical results or with those computed using the commercial finite element soft-
ware, ABAQUS (2001). To aid the use of bending relationships for readers, specialized relationships de-
veloped for the plate problems treated in this study have been compiled in Appendix A, with the
corresponding thin plate solutions given in Appendix B.

2. Governing equations

Consider the bending of an isotropic and homogeneous plate subjected to a transverse load ¢(x,y). The
governing equations of equilibrium according to the classical plate theory, the first-order shear deformation
theory, the Reissner plate theory (see Panc, 1975; Reddy, 1999) and the Levinson plate theory (1980) are
given by

' The order of a plate theory refers to the order of the transverse coordinate z in the expansion of the displacement field.
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where O, and O, are the transverse shear forces per unit length while M,., M,, and M,, the moments per unit
length.

Levinson (1980) has adopted the above set of equilibrium equations in his formulation of a third-order
plate theory but the equations are variationally not consistent with the assumed displacement field.
Therefore the Levinson plate theory has been perceived by many as being variational inconsistent and has
prompted several discussion on its correctness in the open literature (Levinson, 1987; Hutchinson, 1987;
Rychter, 1987). A variational consistent third-order shear deformation plate theory has been developed by
Reddy (1984). It requires the introduction of higher-order stress resultants that are physically difficult to
interpret.

3. Shear deformation plate theories

Although the equilibrium equations in Egs. (2.1) are valid for various theories, the stress resultants (M.,
M,,, M., O, and Q,) in each theory are related to the generalized displacements differently. One can
however express the stress resultants for the Mindlin, Reissner and Levinson plate theories in terms of the
displacements in the following canonical form:

[ [og? ¢! owi wH Bq
H __ X Y _ _
M, =D ;2/( o +v 3 (1 JZ/)< o +v 57 > Ty (3.1a)
[ (o ag! wl Pw | Bq
H __ Yy X _ _
M, =D M(@y +v o (1 42/)( A V5 > Ty (3.1b)
a1 ot 0¢) *wt
MXy = ED(] — V) of ay +§ — 2(1 — JZ/)( axay> y (310)
a H
0 = &/KsGh(d)f +%) (3.1d)
a H
o = &/KsGh(qbf +—g; ) (3.1¢)
op!! 3¢ 2%q

where the superscript H denotes the shear deformable plate quantities, / is the plate thickness, D is the
plate flexural rigidity, G is the shear modulus and v is the Poisson ratio. The variables w, ¢, and ¢, in
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Egs. (3.1a—f) are the kinematic displacements assumed for bending by the various plate theories which will
be characterized separately below and .# (= (M, + M,,)/(1 + v)) is the Marcus moment or moment sum
(Marcus, 1932). The shear coefficient K; and the constants .o/ and % will be defined for the respective plate
theories as follows.

The Mindlin plate theory. In the Mindlin plate theory, w is taken to be the mid-plane transverse dis-
placement while ¢, and ¢, represent the normal rotations about the y- and x-axes, respectively. The para-
meters .7, # and K, have the values

=1 #B=0, K, ==« (3.2)

where x? is the Mindlin shear correction factor that is dependent on the plate loading, geometrical and

boundary conditions. Generally for isotropic plates, it has commonly been taken as 5/6.

The Reissner plate theory. Unlike the Mindlin and Levinson plate theories, the Reissner plate theory is
derived through a priori assumption of stress distributions and one obtains the displacement kinematics, via
matching the work done of the stress through the plate thickness with that of an equivalent force (Reissner,
1945, 1947). As a result, w is the weighted average transverse plate deflection while ¢, and ¢, are the
equivalent normal rotations about the y- and x-axes, respectively. For the theory, the parameters .o/, % and
K, take on the values of

kv 5
— W — — -
o =1, A= 0’ KS_6'

The Levinson plate theory. The displacement field hypothesized by Levinson in his formulation belongs
to that of a third-order plate theory while maintaining the transverse inextensibility; here, it is to be re-
marked that all the theories concerned in this study, including the Kirchhoff plate theory, retains such a
hypothesis. With a cubic polynomial representation of the transverse coordinate in the displacement field,
the normal to the mid-plane is allowed to warp during deformation in a non-linear fashion with zero ro-
tation at both free surfaces. Therefore, ¢, and ¢, are the rotations of the warped normals about the y- and x-
axes, respectively, while w denotes the mid-plane displacement (Levinson, 1987). The parameters .«/, % and
K for the Levinson plate theory become

4 5
y/—s, % =0, KS—6. (3.4)

Using Egs. (3.1a—c) and (3.1f), the shear forces 0¥ and Q% can also be determined from the equilibrium

equations, Egs. (2.1b) and (2.1c), respectively, in terms of the moment sum as

(3.3)

ot 1 [ o (og” I\| @ oq

H - _ _ X y _ _1
O == T3P0V “Q/ay< o ox T+vox (3.52)

ot 1 [ o (ag” ¢"\| 2 oq

H _ _ — x __ 'y _ 1
0 ==, 3P0 M@x( dy  ox T+vay (3:50)

Using Egs. (3.5a,b) and (2.1a), one can now establish the first governing equation for the bending of
thick plates as

v? (/W 7 q> =—q. (3.6)

1+v

Similarly, from Egs. (3.1d), (3.1e), (3.1f) and (2.1a), the second thick plate governing equation is written
as
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M Ac?
2 — = — _—
KSGh(V w + ) (1 1+v>q, (3.7)

where
) 2K,Gh 12K

“=Di-v T

By differentiating Eqs. (3.5a) and (3.5b) with respect to y and x, respectively, and combining with Egs.
(3.1d) and (3.1e) to eliminate the transverse deflection w, one arrives at the last essential governing
equation for thick plates

H a H H a H

o2 A0 99\ _ (2 99 ) (3.8)
oy Ox dy Ox

With a sixth-order system of governing differential equations for the concerned shear deformable plate

theories, it will be necessary to have a set of six boundary conditions for unique solutions. Hence along a
plate boundary, the conditions to be imposed for each support type are

e simply supported edge:

wh =M1 = ¢ =0, (3.9)
e clamped edge:

W' =¢, = =0, (3.10)
o free edge:

M,, =M, =0/ =0, (3.11)

where 7 is the outward normal direction to the plate boundary and s the tangential direction.

4. Kirchhoff plate theory

For the bending of thin plates, the Kirchhoff stress resultant—displacement relationships are given as
follows:

otk 2uk
ME = D<—ax2 e ) (4.12)
*wk *wk
ME— _p( ¥ L, .
W D( 92 +v ) )’ (4.1b)
o*wk

where the superscript K denotes the Kirchhoff plate quantities. As known, the normality assumption made
in the Kirchhoff plate theory will result in zero transverse shear strains, thereby ignoring the transverse
shear deformation. As a result, the Kirchhoff shear forces computed by the constitutive relations will be
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zero. Thus to compute shear forces for thin plates, one will have to resort to the conditions of equilibrium,
Egs. (2.1b) and (2.1c) to give

0 0
K — _D_ 2. K K — _D_ 2. K . 42
Of = DL (V). Of =D (V) (422,b)
Introducing the moment sum .#, the expressions for the Kirchhoff shear forces can be simplified to
o.u* o.u*
= = 4.3a,b
Qf ax ) Qf ay 9 ( a, )

where .#* = —DV?wX. Note that the Kirchhoff stress resultants in Eqs. (4.1)—(4.3) can also be obtained
from Egs. (3.1) and (3.5) by setting .« = % = 0.

The governing equation for the bending of thin plates can be established by substituting Egs. (4.3a) and
(4.3b) into Eq. (2.1a)

V2t =—-q = DVW =gq. (4.4a,b)

From Eq. (4.4b), one can see that the governing differential equation of the classical thin plate theory is
of fourth order and will hence require a total of four independent boundary conditions for solutions. As
such, the Kirchhoff boundary conditions to be specified for each support type along a plate edge are defined
as follows:

e simply supported edge:

wk =M~ =0, (4.5)
e clamped edge:
owk
w=—=0 4.
On ’ (4.6)
o free edge:
Mﬁ = nK = 0’ (47)

where VX (= OF + (0MX /0s)) is the effective shear force. As mentioned by Reissner (1985), the number of
Kirchhoff boundary conditions especially along a free plate edge poses a boundary paradox, as opposed to
the common engineering knowledge that there should be three natural boundary conditions along such a
plate edge, i.e., vanishing bending and twisting moments, as well as shear force. To remove such a paradox
for this case, a contraction of two boundary conditions into one has been made to introduce the effective
shear force using the variational approach.

5. Relationships between shear deformation and classical theories

Based on the order of the governing equation(s) of the plate theories, it is evident that it is comparatively
easier to seek solutions using the thin plate theory. Also owing to the long existence of the Kirchhoff plate
theory, thin plate solutions have been well-documented in many standard texts on plate problems like
Timoshenko and Woinowsky-Krieger (1959), Szilard (1974), Panc (1975), Mansfield (1989) and Reddy
(1999). As much as it is important to model moderately thick plates more accurately using the shear de-
formable plate theories, it has been mathematically difficult to develop thick plate solutions analytically.
Hence, to have bending relationships that can predict thick plate solutions using the corresponding thin
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plate results provides an attractive option as these bending relationships will also help engineers and re-
searchers to elucidate the significance and effect of transverse shear deformation.

This section will illustrate the procedures how the solutions of a shear deformable plate theory can be
related to the results of the thin plate theory. First by the analogy of load equivalence, one may express a
relationship for the moment sum by setting Eq. (3.6) equal to (4.4a) and then solving the Laplace equation,

B B
VAt - —q) =Vl = " ="+ —q+ DV, (5.1a,b)
1+v 1+v
where @ is an intrinsic plate function that is strictly bi-harmonic, i.e.,
vt = 0. (5.2)

Substituting Egs. (4.4a) and (5.1b) into Eq. (3.7) will furnish the Kirchhoff-shear-deformable deflection
relationship which is

H K 1 B K H H
wi=w +KGh 1 - 3 ME— DT+ P (5.3)

where ¥¥ is another intrinsic plate function that will satisfy the Laplace equation
viyh = 0. (5.4)
For the differential equation given in Eq. (3.8), one can express the solution as Q” that will constitute the
last of the three intrinsic plate functions for all the bending relationships
H
o — ad)xH _ 6(;5),
’ dy Oox

In view of Egs. (3.1d), (3.1e), (3.5a), (3.5b), (4.3a), (4.3b), (5.1b), (5.3) and (5.5b) and by a series of
algebraic manipulation, the rotation-slope relationships are determined as

V! = 28

(5.5a,b)

owk 1 1 A 0 /(9 1 0Q"
H:___ 1____ K | = Z(DH ‘DH_lPH o .
¢ ox  KGh ( o 2 )Qx T\ Ve t2 I (5.6a)
owk 1 1 A 0 (9 1 0Q"
H:___ 1___ K ~ | = Z(DH (DH_'I/H - - .
¢ dy  KGh ( o 2 )Qy * dy &/v * ? ox’ (5.6)
where
‘ D
9 = XGh (5.6¢)

Finally for the stress resultant relationships, one can substitute Egs. (5.3), (5.6a) and (5.6b) into Egs.
(3.1a—e) to write

0 A~

M = M~ —,@ﬁ—D(l —v)a—+Dv2<b”, (5.7a)
XX XX ay ay
00* oA*

aQ 1 oAt oA™
H __ K Y _ — - -
Mxy —Mxy-‘re%) o +2D(1 V)( o + ox ), (5.8)
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QH:QK—FDE(Vz(DH)—f—lD(I—v) ,Q/@ (5.9a)
* * Ox 2 oy )’
o =0f +DE(VZ¢H) —10(1 —v) &/@ (5.9b)
y 4 dy 2 ox )’
where
G o 09"
+ Y (gvieH H _ wH o Bee )
A" = (VP + @ — ) + o (5.10a)
4 =2 gvrer g gy L2 (5.10b)
Oy ) 2 ox '

6. Intrinsic plate functions for various plate problems

In general, the Kirchhoff-shear-deformable plate bending relationships can be specialized to any plate
problem by first determining the corresponding intrinsic plate functions that comply with the plate geo-
metry and basic boundary conditions. For the mathematical requirement, these intrinsic plate functions will
further contain a total of six constants of integration that can be established using the rest of the plate
boundary conditions to completely define the plate problem. Herein by using Lévy’s proposed method of
solutions, we shall look into three basic plate problems to study the effect of transverse shear deformation
using the above-derived bending relationships. These three basic plate problems are:

(a) simply supported rectangular plates;
(b) rectangular plates with two opposite simply supported edges;
(c) clamped rectangular plates.

Particularly for plate problems of type (b), the corresponding intrinsic plate functions and the associated
constants have appeared before in the works of Wang et al. (1999, 2001), Reddy et al. (2001) and Lee et al.
(2002); the authors however wish to present these quantities in a generic form for a more general imple-
mentation. Else for plate problems of types (a) and (c), the analysis of thick plates using the current ap-
proach have hitherto not been presented.

6.1. Simply supported rectangular plates (SSSS)

For a rectangular plate that is simply supported along y = £5/2 and x = +a/2 (as shown in Fig. 1), the
types of loading considered herein are distributed bending moments along two opposite plate edges. The
results of such plate problem will provide the basis of solutions for clamped rectangular plates by ensuring a
priori that the distributed moment applied to the simply supported edges of a transversely loaded plate will
result in zero normal rotation.

6.1.1. Distributed moments along y = +b/2

In view of the plate loading and support conditions and assuming symmetrical bending of plates about
the x-axis (M,[,_,,, = M,|,__,/»), one can obtain the corresponding intrinsic plate functions using Lévy’s
proposed method of solutions as
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Fig. 1. Simply supported rectangular plate with edge distributed moments.
o — ; (%m Cy,, sinh ocmy> COS 0y X,
ph — Z(Cz,n cosh a,,y) cos a,,x, (6.1)
m=1

Q= Z(Cgm sinh ,,) sin o,,x,
m=1
where 1, = o2, + ¢? and o,, = mn/a. For the boundary conditions along x = +a/2, the index m is restricted

to odd integers.
Now to determine the constants of integration, the boundary conditions along y = £5b/2 are imposed as

H K n_ 0wt H K
wo=w = 07 d)x = E = 0, MW = Myy (62)
From Egs. (5.3), (5.6a), (5.7b), (6.1) and (6.2), the constants can be solved as
Cin =0,
1 ) B K
Con = = g gn>och < _2)% o2 (6.3)
1 Amb ([ c*oly, K
C3m_KSGhS ch <=5?/)m>% ly=s/2-
Now if the case of anti-symmetrical bending of plate about x-axis, ie., (M), _,, =—(My,),_ ), is

considered, the intrinsic plate functions will become

P = Z; ( ﬁ C,,, cosh oc,,,y) COS O, X,

ph — Z(Cz,n sinh a,,) COS X, (6.4)

o0
Z (C3m cosh 4,,y) sin a,x.
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With the consideration of the boundary conditions as shown in Eq. (6.2), the constants are established as

Clm = 07
1 b BNk
Conm X.Gh cosechT (1 — T)‘%m|yb/2’ (65)
1 Jmb [ Pl
— N m\ K
C3m K\Gh cosec 2 (Mim>'%m|yb/27

where ./~ (defined as .#* = 4% cosa,x) can be computed from Egs. (B.1) and (B.2d) or (B.3d). If one
were to substitute the intrinsic plate functions with the evaluated constants into the deflection relationship
Eq. (5.3) and together with the corresponding thin plate solution given in Egs. (B.2) and (B.3), it can be
shown for both cases of symmetrically and anti-symmetrically applied edge moments that

w = wk. (6.6)

Eq. (6.6) essentially applies to all three shear deformable plate theories considered; however, the rotations
and stress resultants will differ from the corresponding thin plate solutions.

6.1.2. Distributed moments along x = +a/2
For distributed moments symmetrically applied along x = +a/2, the corresponding intrinsic plate
functions are

o =3 (iDln sinh ﬁnx) cos 3,

n=1 2B”
P = Z(Dz,, cosh f8,x) cos f3,y, (6.7)
n=1

Q" = (D, sinh d,x) sin B,
n=1
where 92 = > +¢* and f8, = nn/b. Here, the index n is restricted to odd integers to comply with the
boundary conditions along y = +b/2.
The boundary conditions at x = +a/2 for the problem will be

_

w =wk =0, ¢;I_@y 0, M*=ME. (6.8)

Now by substituting Egs. (6.7) and (6.8) into Egs. (5.3), (5.6b) and (5.7a), one obtains

Dln = 07
B Bua (| B3Nk
D,, = ~X.Gh sech 3 1 - N N ey (6.9)
ﬁna czﬁn K
Ds, = ~X.h sech 5 (%19”)%,1 lx=a/2-

Similarly, for the case of anti-symmetrically applied edge moments along x = +a/2, the intrinsic plate
functions are
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o — Z <XD1,, cosh ﬁ,,X> cos By,

“— \ 28,
P = Z(D2" sinh f8,x) cos f3,y, (6.10)
n=1

Q" = (D3, cosh d,x) sin B,,

n=1

and the corresponding constants evaluated using the boundary conditions in Eq. (6.8) are

Dln = 07
- Bua (| 2N Lk
D =~%G cosech == 1 ——— M|, o (6.11)
1971a C2ﬁn K
D5, = — K.Gh cosech P (&/19’1 ) %n |x:a/27

where /% (given as .4* =Y /" sin B,y) can be calculated using Egs. (B.4) and (B.5d) or (B.6d). As
expected in both of these plate problems, the thick plate deflections for the three shear deformable plate
theories will also be the same as the thin plate results.

6.2. Rectangular plates with two opposite simply supported edges
Consider a rectangular plate of length @ and width b, that is simply supported along the two opposite
edges (x = 0,a), as shown in Fig. 2. In view of the plate problem and adopting Lévy’s proposed solutions,

the intrinsic plate functions can be established as

o = Z {y (Cy,ncosh o,y + Cy, sinh a,,p) | sin a,,x,

m=1 20{,,1
P = Z(C3'” cosh o,y + Cy, sinh a,y) sin o,,x, (6.12)
m=1

Q1 = Z(Cm sinh 4,y + C,, cosh 2,,y) cos «,,x,

m=1

22y 2 _
where 4, = o> + ¢* and o, = mn/a.

—A_ i S,CorF i
] ]
b2 |; i .
! ! Simply-supported edge (S)
% | s > Clamped edge (C)
i i Free edge (F)
b/2 i i
1 ! S,CorF :
N

Fig. 2. Rectangular plate with two opposite simply supported edges.



3050 G.T. Lim, J.N. Reddy | International Journal of Solids and Structures 40 (2003) 3039-3067

6.2.1. Clamped edges along y = +b/2 (SCSC)
Now consider the case when the other two edges of the considered rectangular plate are clamped, one
will impose the following boundary conditions along the edges (y = +b/2):

ot

W=k =0, ¢ =
y ay

=0, ¢’ =0. (6.13)

Hence by substituting Eqgs. (6.12) and (6.13) into Eqgs. (5.3), (5.6a) and (5.6b), the constants can be
determined as

%y [ (A coth 2 — g, cothZ2) p- — & coth 2] + 2,11

Cin = g b [imb (@ b wionts gmb |
{{ coth%? — o, (%) — }Amcosh —[g—’—am(‘d)coth%}smh%}

o

%[ (An tanh 222 — o, tanh 222 ) p* — & tanh 28] + 1,17,

Gy = -
’ {{ tanh 2 — o, (2) _MP’" sinh 22 — [Zb _ o2 (2 tanh 2 | cosh“'”b}

of

wb [ b . Oyb
Cyp = sech X2 — Gy sinh 22 _ o,
2 \ da, "

P (6.14)
Cyp = cosech%b (%C]m cosh% - pm),
Csw = — (%) sech i’;b |:(Zm (ij) Com cosh— + awp) + ém} ;
Com = — (;—;) cosechlme {ocm (%) Cim sinhalzb + owp,, + é,;] ,
where
b= s (1~ 25 ) (A8 o],
= s (1~ 5= 2 )@l G5l o) (6.19)
’ﬁ = _2&% (1 _é _%CJ)(QK y=b/2 + QK |y7—b/2)
and .#%, OF and 0Oy, can be determined using Eqs. (B.7), (B.8) and (B.9b).

6.2.2. Free edges along y = +b/2 (SFSF)
For the case of free edges along y = +b/2, the boundary conditions to be defined are

H __ K __ _ K __ H __
My =M, =0, O =VF=0, MJ=0. (6.16)
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In view of Egs. (6.12), (6.16), (5.7b), (5.8) and (5.9b), one obtains the constants as
o + {/1,,, tanh 222 — (/12 + o2 ) tanh %2 } + (&) +n;) tanh 22

Clm - N )
{(g — Jn% tanh 22 ) g, cosh“’é—fb - [“"Ib tanh?s? — 02 9 — 3+ )} sinh %22 }
5+ [A coth———(}2 + o2 )coth‘i}p;—&—(é;—i—r];)cothM
C2m = y
{ (4= 7n@ coths?)a, sinh " — | %2 coths® — 227 — 32| cosh® |

Gy = lzcosecha'"b{ {(x’:’tb coshaizb — 2(11+—vv)

2
1 Omb [ [owb . oayb 14 O | S
Can = — sech 3 {{ 1 sinh > T30y cosh 3 }Clm Z“m(/lm+ocm)pm+§m+nm ;

) 1
smhz] Cop — 2, (/12 + fxm)Pm + ¢, + ﬂm}

m

m
2

c Amb . ob -
Cspy = — ;cosechT <9C2m sth + p_) ,

Ol
02 /1 b amb +

Con =~ sech =3 (gclm cosh ==+ p_m> 7

(6.17)
where
pm 2K Gh Q§”|" b/2 Qfm'ysz/z)a
L1

ém n m (M"‘"‘|‘ =b/2 iMX}m‘}f—b/z)

(6.18)

}’:7})/2)’

L oy (B
n = 5K Gh (T) (Qhlyepn £ O
O Bc?
5, = K Ch <2) (Olysn T Ol i)

and Eqs. (B.7), (B.8) and (B.9c) shall be used to establish M5, . Of, and Of,.

3

6.3. Clamped rectangular plates (CCCC)

Treating the clamped plate problem, as shown in Fig. 3, it is assumed that the bending of the plate is to
be symmetrical about both axes. To obtain the solutions for clamped plates, the approach will be to su-
perimpose the solutions of simply supported plates under transverse loads and the corresponding solutions
for simply supported plates with distributed moments along the plate edges.

In view of the symmetrical bending of plate, the intrinsic plate functions are

P — ,,,Z:; (%m Cy,, sinh ozmy> COS o X + ; ( 2, Dy, sinh §, x) cos f3,y,
pH Z(sz cosh ,,y) cos o, x + Z(DZ” cosh f,x) cos By, (6.19)
m=1 n=1

o0

Q= Z(Cg,,, sinh Z,,y) sin o,,x + Z(D3,, sinh ¥,x) sin 8y,

m=1 n=1
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|- a2 —w|-— a2 —m]
17

b/2 C Clamped edge (C)
% C ,— C —> X

b/2 C

1 Z

Fig. 3. Clamped rectangular plate.

where 4, = o2 + ¢? and «,, = mn/a while 92, = . + ¢* and B, = nn/b and the indices m and n only take odd
integers. It is to note that the intrinsic plate functions for the present plate problem can be established by
simply summing up the corresponding functions of the transversely loaded simply supported plates which
are identically zero (Wang et al., 1999) and those of simply supported plates with distributed edge moments,
Egs. (6.1) and (6.7).

With Egs. (5.3), (5.6a), (5.6b) and (6.19), one can write the specialized deflection and rotation—slope
relationships of a clamped plate as

2 K o]
wil = w& + (1 _930) M +Z (szcoshocmy

A .
> ) K.Gh C},, sSinh ocmy> COS 0, X

m

+ Z <D2n cosh ff,x — %Dln sinh ﬂnx> cos v, (6.20)

n=1 n

owk 1 K = 9
¢ = _alx - (1 7 ) g Z {a[ Ciwsinh o,y + (Eclm - sz> cosh ocmy}
i oo
C3,,, cosh /Imy} sin o, x + Z {
n=1

1 )
+ §D3n sinh ﬂ,,x] } cos f,y, (6.21a)

Dy, cosh 5, x

1 x
D D —D inh —
( In — 2n + 2ﬁ2 1n> sin ﬂnx + 2

B,

n

owk 1 of & g
H__ " e v .
qﬁy =% <1 i ) X.Gh ,?: { { Dy, sinh f,x + (&/ Dy, D2n> cosh ﬁ,lx]

1

9, . 9 1 )
+ §D3n cosh 19,,x} sin f,.y + Z U K&/Clm — Cyn + 2oc,2nclm> sinh o,y

m=1

1 .
+ . Cymcosha,y — = Cs, sinh /Imy] } COS 0, X. (6.21b)

m

To satisfy the boundary edge conditions of a clamped plate using Egs. (3.10), (4.6), (6.20), (6.21a) and
(6.21b), the constants, C;, and D;, (i = 1,2,3) are determined as



G.T. Lim, J.N. Reddy | International Journal of Solids and Structures 40 (2003 ) 3039-3067 3053

% %f‘ |y:b/2
2 K,Gh

b
S | 7, Cim cosh% + 5,62 (1 -

s (1) G ity 1.5 (st e )
+ 2;n tanh 29 4 %sech2 ﬁga}Dln cosh ﬁ;a
= (1 —5—7) (Q;ELCG;/Z—F% tanh% %) —ﬁn(tanh%—% tanhﬂ£a>
g (1 _,@;2) %I:G_h/z (6.22a)

| D1, cOSh ﬁ;a

K
CQ 1— @Cz “ﬂn |x:a/2
" 2 K,Gh

1 1 B\ Olicapp | . nm 9 Umb Oy b
0(2—4_?92(197> KSGh Sln7+ {ocmy(ta nh EtanhT)

1 wb b b mb
+ﬁm tanho{2 Jr4$echzocz]Clmcoshm2
_ 1,i,_ ol,— b/2+%t hManJy b/2
o 2 K,Gh - 2  K,Gh
) imb Bc? /%Kb b/2
amb b . O b gcz %5 | y=>b/2
C sech 3 lclm% SlnhT— (1— 3 >W s (6220)
) 9 O BAN M|,y 1 22\ 0%,
=—sechZZ ) o | = cosh22 4 (1 = 25 ) m=b2 1—— _ Zamly=b/2
Com =7, 500 {“ [MCI cosh +< 2 ) X.Gh +< 7 2 ) K.Gh [’
(6.22d)
na a . na %02 ‘%rﬂx:a
D sechﬁ2 [D1n4/3n smhﬂ2 - <1 - >K5Gh/2 , (6.22¢)
& J,a 9 B.a B ﬂK|:/2 1 %3 QK|: 2
D. = — < qech2” Zp hEln R I - _Z¢ ) =Zmb=a2
=T, {ﬁ" PR ) +( 2) K.Gh +( o 2) KGh [
(6.22f)

K K
where .#,,, Of, and Qf are evaluated from Eqs. (B.1) and (B.2) and .#,;, Of, and Qf, are evaluated from

Eqgs. (B.4) and (B.5) while



3054 G.T. Lim, J.N. Reddy | International Journal of Solids and Structures 40 (2003) 3039-3067

_ 1 n 20,un and 5. — 1
T T ) AT "=t )R+ )

It should be noted that the expressions in Egs. (6.22a—f) are not in an explicit form in the sense that the
evaluation of Cy,, and D,, is dependent on one another. This will pose a difficulty as such a dependency of
the constants requires one to solve an infinite system of equations. A commonly adopted approach is to
reduce it to a finite system of equations by considering only a finite number of terms. Such an approxi-
mation of the system will then raise several mathematical issues such as the convergence of solutions and
their uniqueness. These issues were addressed by Meleshko (1997) in his findings where he reported that for
thin clamped plate solutions, the resulting infinite system of equations is regular and will therefore have a
set of unique and bounded solutions. Furthermore, the solution of the reduced finite system using the
method of successive reduction will be convergent, tending towards the unique solution of the infinite
system. While the proof is not provided in this study, numerical studies will nonetheless be carried out to
ensure the convergence and accuracy of the solutions.

7. Results and discussion

With the intrinsic plate functions and their corresponding constants determined for the respective plate
problems, one can now utilize the bending relationships as derived earlier to generate thick plate results. As
discussed earlier, the convergence of the series solution will be of concern for the case of clamped plates.
Table 1 shows the numerical results from a convergence study to determine the appropriate number of
terms needed for thick plate solutions with an acceptable degree of precision using the three different shear
deformable plate theories. The plate problem concerned herein is a clamped square plate under uniformly
distributed load ¢,. It is clear that the results for the maximum deflection show faster convergence than
those for the bending moments and a good precision can be noted in the solutions when thirty or more
terms have been adopted for the series. With that from here on, the number of terms that will be used for
computation is 20, unless specified otherwise.

To verify the accuracy or correctness of the relationships, available analytical results found in the open
literature and those generated by ABAQUS will be used for comparison. Table 2 presents the maximum
transverse deflections of square Mindlin plates of various boundary conditions and plate thicknesses
subjected to uniformly distributed load ¢, computed by the bending relationships and ABAQUS. It is to
note that a mesh size of 40 by 40 thick plate (S8R) elements has been used for generating ABAQUS so-
lutions. One can see from the table that there is an excellent agreement between the present results and
those furnished by ABAQUS.

Now adopting the Reissner plate theory, transverse deflections and the shear forces computed by the
relationships for SFSF thick plates have been tabulated in Table 3, together with the solution as given by
Salerno and Goldberg (1960). A one-to-one correspondence between the two sets of results is observed.

Levinson plate results generated via the bending relationships had already been presented in the previous
work of the authors (Reddy et al., 2001) and compared with those computed by Levinson and Cooke (1983)
and Cooke and Levinson (1983) for all-round simply supported plates and plates with two opposite simply
supported edges. In that study, the solutions for simply supported plates had matched up very well while
the results for the second plate problem however showed notable dissimilarity. It was shown then that there
are missing terms in their governing equations, leading to erroneous numerical results thereafter. For a
more detailed discussion of the topic, readers may refer to the above cited references.

To review the differences of the predictions for the thick plate results of the three shear deformable plate
theories, maximum normalized transverse deflections of clamped rectangular plates under a uniformly
distributed load have been furnished in Table 4. From Table 4, one can see that of the three, the Levinson
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Convergence studies for the thick plate results of clamped square plate under uniformly distributed load ¢, for the various shear
deformable plate theories (#/a = 0.1, K, = 5/6, v=10.3)

No. of terms (m, n) (Winax ) (M)
Mindlin Reissner Levinson Mindlin Reissner Levinson

5 1.5057 1.5046 1.5626 5.0582 5.0462 5.0268
10 1.5047 1.5042 1.5624 5.0740 5.0620 5.0402
20 1.5046 1.5044 1.5628 5.0738 5.0614 5.0397
30 1.5046 1.5045 1.5630 5.0740 5.0615 5.0398
40 1.5046 1.5045 1.5630 5.0742 5.0616 5.0399
50 1.5046 1.5045 1.5631 5.0743 5.0616 5.0399

A Wmax = 1000w(0,0)D/(qoa*), M, = —100M,,(a/2,0)/(qoa®).

Table 2

Normalized maximum plate deflections [1000wD/(goa*)] of square Mindlin plates with various boundary conditions and plate
thicknesses under uniformly distributed load ¢go (o =1, 2 =0; K, = 5/6, v=0.3)

h/a SCSC SFSF CCcCC
ABAQUS Present results ABAQUS Present results ABAQUS Present results
0.005 1.9179 1.9179 15.0237 15.0237 1.2660 1.2660
0.01 1.9202 1.9202 15.0380 15.0380 1.2679 1.2679
0.05 1.9918 1.9918 15.2165 15.2165 1.3273 1.3273
0.1 2.2087 2.2087 15.6001 15.6001 1.5046 1.5046
0.2 3.0211 3.0211 16.8975 16.8975 2.1722 2.1722
Table 3

Normalized plate results of square Reissner plates (SFSF) with different plate thicknesses under uniformly distributed load gy («/ = 1,
B =h/10; K; = 5/6, v=0.3)

h/a w(a/2,a/2) 0,(0,0) 0,(a/2,a/4)
Salerno and Present results Salerno and Present results Salerno and Present results
Goldberg (1960) Goldberg (1960) Goldberg (1960)

0.005 15.0236 15.0236 4.6343 4.6343 2.6503 2.6503

0.01 15.0376 15.0376 4.6325 4.6325 2.6651 2.6651

0.05 15.2081 15.2081 4.6167 4.6167 2.7875 2.7875

0.1 15.5677 15.5677 4.5954 4.5954 2.9479 2.9479

0.2 16.7760 16.7760 4.5499 4.5499 3.1617 3.1617

w = 1000wD/(qoa"). O, = 100:/(q0a). O, = —1000,/(qoa).

plate theory consistently predicts the highest deflections for all cases; the most notable differences are those
for the very thick plates. This is to be expected since in the Levinson plate theory, the formulation allows
the normals to the mid-plane to warp through the plate thickness rendering the plate to be relatively
flexible. However, the more interesting observation is the stiffer solution yielded by the Reissner plate
theory which allows the consideration of the normal stress (o.,) and the plate normal to deform; this marks
the distinct differences between the Reissner and Mindlin plate theories and one can refer to Wang et al.
(2001) and Lee et al. (2002) for more detailed discussion. The stiffer behavior of the Reissner plate results
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Table 4

Maximum normalized plate deflections [1000wD/(goa*)] of a clamped rectangular plate with various plate thickness under uniformly
distributed load g, specialized for the various shear deformable plate theories (K, = 5/6, v = 0.3)

hja b/a=1.0 bjla=1.5 bja=2.0

MPT RPT LPT MPT RPT LPT MPT RPT LPT
0.005 1.2660 1.2660 1.2661 2.1974 2.1974 2.1976 2.5339 2.5339 2.5341
0.01 1.2679 1.2679 1.2685 2.1999 2.1999 2.2008 2.5366 2.5366 2.5375
0.05 1.3273 1.3272 1.3425 2.2802 2.2801 2.3008 2.6236 2.6235 2.6460
0.1 1.5046 1.5044 1.5628 2.5246 2.5241 2.6050 2.8927 2.8921 2.9814
0.2 2.1722 2.1711 2.3911 3.4610 3.4591 3.7675 3.9473 3.9452 4.2941

MPT = Mindlin plate theory, RPT = Reissner plate theory and LPT = Levinson plate theory.

Table 5

Normalized stress resultants of clamped square plates with various plate thickness under uniformly distributed load ¢, specialized for
the various shear deformable plate theories (K; = 5/6, v =0.3)

hja (M) (M) (Qy)a

MPT RPT LPT MPT RPT LPT MPT RPT LPT
0.005 5.1332 5.1332 5.1331 0.0007 0.0007 0.0011 44.0202 44.0205 44.0204
0.01 5.1327 5.1326 5.1323 0.0013 0.0014 0.0024 43.9145 43.9150 439125
0.05 5.1166 5.1135 5.1072 —-0.0507 —0.0456 —0.0469 42.8595 42.8606 42.7887
0.1 5.0738 5.0614 5.0397 —0.1403 -0.1185 -0.1690 41.1982 41.1969 40.9739
0.2 4.9797 4.9299 4.8719 -0.2647 -0.1755 —0.5530 38.1903 38.1796 37.8461

Classical thin plate solution: My, = 5.1334, M,, = —0.0018, 0, = 44.1193.

My = —100My(a/2,0)/(qoa’), My, = 100Myy(a/2,5/2)/(qua?), O, = —1000,(0,5/2)/(qoa).

v

Table 6

Normalized stress resultants of clamped rectangular plates with various plate thickness under uniformly distributed load ¢y, specialized
for the various shear deformable plate theories (b/a = 1.5, K, = 5/6, v=0.3)

hja (M) (Mxy)a (Qy)a

MPT RPT LPT MPT RPT LPT MPT RPT LPT
0.005 7.5661 7.5661 7.5661 0.0010 0.0011 0.0014 46.4041 46.4044 46.4040
0.01 7.5659 7.5658 7.5656 0.0019 0.0020 0.0030 46.2738 46.2744 46.2708
0.05 7.5586 7.5555 7.5514 -0.0532 —-0.0475 —0.0491 44,9630 44.9640 448717
0.1 7.5343 7.5218 7.5049 —-0.1588 —-0.1341 —-0.1833 42.9585 42.9568 42.6937
0.2 7.4470 7.3969 7.3366 -0.3191 -0.2179 —0.5818 39.5971 39.5854 39.2509

Classical thin plate solution: Mﬁ, = 7.5662, Mﬁ = —0.0016, @f = 46.5255.
My = —100Mq(a/2,0)/(qoa’), My = 100M,,(a/2,b/2)/(q0a*), O, = —1000,(0,5/2)/(q0a).

may be attributed to the weighted average approach that has been introduced to give equivalent values of
mid-plane transverse displacement and normal rotations. Nonetheless, these dissimilarities in the formu-
lation for the two plate theories and their results, although small for thin plates, should not be ignored and
hence the two theories should not be treated as the same. To illustrate the variation of the stress resultants
predicted by the three plate theories for clamped plates with various plate aspect ratios (b/a) and plate
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Table 7
Normalized stress resultants of clamped rectangular plates with various plate thickness under uniformly distributed load g, specialized
for the various shear deformable plate theories (b/a = 2.0, K = 5/6, v =0.3)

hja (M) (M) (Q‘)d

MPT RPT LPT MPT RPT LPT MPT RPT LPT
0.005 8.2875 8.2875 8.2875 0.0023 0.0023 0.0027 46.2647 46.2650 46.2641
0.01 8.2875 8.2874 8.2873 0.0029 0.0031 0.0040 46.1295 46.1301 46.1258
0.05 8.2860 8.2828 8.2802 —0.0556 —0.0495 —0.0526 44.8010 44.8019 44.7072
0.1 8.2798 8.2672 8.2563 -0.1708 -0.1439 -0.1977 42.7661 42.7643 42.4935
0.2 8.2449 8.1946 8.1479 —-0.3478 -0.2367 —0.6043 39.3523 39.3407 38.9945

Classical thin plate solution: M,, = 8.2875, M, = —0.0005, 0, = 46.3913.
M, = —100M(a/2,0)/(qoa®), M, = 100M,,(a/2,b/2)/(qoa?), 0, = —1000,(0,5/2)/(qoa).

thicknesses (/#), computed solutions are presented in Tables 5-7. These should serve as references for nu-
merical solutions.

8. Concluding remarks

Presented herein are the canonical bending relationships that allow one to generate thick plate results
for the Mindlin, Reissner and Levinson plate theories using the widely available thin plate solutions.
The bending relationships have been derived for several plate problems like simply supported rectangular
plates subjected to distributed edge moments, rectangular plates with two simply supported edges and
clamped rectangular plates both subjected to uniformly distributed transverse loads. A convergence study
has been carried out to determine the necessary number of terms for attaining an acceptable precision
for the thick plate results. Also, the correctness of the thick plate results furnished by the canonical
bending relationships for the various plate problems had been substantiated by ABAQUS and other exist-
ing results.
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Appendix A. Specialized bending relationships

For the ease of the application of the Kirchhoff-shear-deformable bending relationships derived in the
main text, these relationships have been specialized in this appendix for each of the plate problems being
considered herein this study. Together with the evaluation of the corresponding constants and the thin plate
solutions (as given in Appendix B), these relationships can be readily programmed to generate useful thick
plate results.
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A.1. Simply supported rectangular plates
A.1.1. Distributed moments along y = +b/2

(a) Symmetrical case. M,,|,_,, = M,|,_

% 2 %K 00
wh = wk + <1 - TC) XGh + ;(Cz,n cosh ,,) cos a,,x,
ok 1 32\ oF & Do
4)1: — _al— (1 - c )KQGh—i-Zoc (sz coshocmy—i— C3m cosh),,,y) sin a,x,
' x S m=1
owk 1 232\ O & 1
H y . . .
¢, =— E — (1 -~ 7) X.Gh Zl - (Cz,,, sinh .,y + o C3,, sinh A,,,y) COS 0, X,
H K _ g a_QI; S 2 j’
M, =M, —% 5 +D(1 Z o, | Comcosho,y + " C3,, cosh A,y | cos o,,x,
y P O
o00* = .52/),,,
M) = My, — e@% Z (sz cosh o,y + C3m cosh lmy> COS L, X,
x —
o0 > o/
My = Mx’f + B GQ/ D(1 —v) Z [oc Co sinh o,y + i (Ai + o2)Cs,, sinh imy] sin o,,.x,
o = .
o7 =05+ ED(I —v) Z(/"L,,,CM cosh 4,,y) sin a,x,
m=1
of = .
ol =0 - ED(I —v) Z(oc,,,@m sinh /,,3) cos o,,x.

(b) Anti-symmetrical case. M, |‘ by = —M,y

y=—b/2

B2\ MK >

w =uk &+ (1 — Tc) X.Gh + Z (Cy,y sinh a,,y) cOs o,

owX 1  Y%c /1 .
P =~ o <1 - 2) KQCK}h ocm <C2m sinh &,y +5- C3m sinh },,,y> sin a,,x,

X

owk 1 2 & 1

d)f =% (1 i 26 ) X an ocm (Cz,n cosh a,,y —|— 5 Cam cosh Amy) COS 0,,X,
y
a K 00 &f}

M= MK - 9 Z (sz sinh o,y + Cg,,, sinh /lmy> COS 0,y X,
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My, =M, — B —D(1 - Z: (Cz,,, sinh o,y + Za, Cs,, Sinh /Imy> COS 0, X,
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A.1.2. Distributed moments along x = t+a/2

(a) Symmetrical case. My|,_,p = Mel,_ .

B\ ME &
wh =wk 4+ ( 5 )K it Z(Dz,, cosh f8,x) cos B, v,
1 2 K 0
qu = _% — (1 -~ QTC) KQéh Zﬂ (Dz,, sinh §,x — D3n smh19,,x) cos f3,y,
s n=1
K 1 2 e
(f)f = —aaly - (1 - .@Tc) Qg‘h + (ﬁ D, cosh §,x — D3,, cosh 19,,x> sin f3,y,
b 5 n=1
a 00
M =ME — 5 an (1—v Z (Dz,, cosh 8, x — &/Z D;, cosh 19,,x> cos By,
Y n=1
A3
MH:MK—%’aQK i D coshﬁx—d—ﬁ"D cosh¥,x | cos 8 .
W W a £ 2n n 02 ﬁn 3n n ny )
K 00
M =M + +D —v) D,,, sin x—— + B;)Ds, sinh x| sin 8y,
o - @ > 1 i hp, 97+ B, hp, B,
o =0of +7D(1 —v) Z(ﬁ D;, sinh ¥,x) cos ,y,
n=1
ol =0y - %D(l —v) Z(ﬁnD3n cosh 9,x) cos f3,y.
n=1
(b) Anti-symmetrical case. Mx|,_,, = —Mu|,__,»
BN MK >
wH—wK—i—(l—T)KG ;Dznsmhﬁx)cosﬁn%
K 1 2 K e 1
¢>f = _aal — (1 —~ '@TC) KQE}h Z (Dz,, cosh f§,x — —D;n cosh 19nx> cos f3,.y,
X s p—
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d)f = o (1 ——~ Tc) KQgh + Z (ﬁ,,Dz,, sinh §,x — D3,, sinh 19,,x> sin f3,y,
a [e%e]
M = MK ,@g —D(1 —v) Z B2 (Dz,, sinh B, x — J{Z” D,, sinh ﬁ,,x) cos By,
Y n=1 Py
A4
y . 00K x A9, (A4)
M, =M, —%# a;é +D(1 — )Zﬁ D, sinh f§, x — 5 —— D5, sinh¥,x | cos f3,y,
1 n

G0
MY =M + % anf—s—D(l —V)Z {[)’ Dzncoshﬁx——(ﬁ2+ﬁ )D;, cosh §, x] sin 8,y,
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A.2. Rectangular plates with two opposite simply supported edges

Besides the plate problems (SCSC and SFSF plates) treated in Section 6.2, the following bending re-
lationships can be applied to plate problems whereby the boundary conditions along the other two plate
edges can be any combination of free, clamped or simply support:

B2 o0
wh = w& + (1 ) X.Gh + Z KCgm - C1m> cosh a,,y

+ (C4m - Cz,,l) sinh oc,,,y} Sin o,,x,
20,

o = ok ) 1 B2\ OF
¥ Ox o 2 ) KGh

- 9
+ Z {am [(;CZW - C3m +
m=1 b

9 .
+ (;; C11m - C4m + %m CZm) sinh O‘my:|

a Cl,,,) cosh o,y

m

Aom .
+ 2 (Cspcosh 2,y + Cg,, sinh imy)} COS Uy X,
owk 1 %
o= (1 _1 _C> %

o 2 )K.Gh

- 9 1 .
- Z(Ofm) |:(Zc2m - C3m + iclm + OC_2C2m> sinh )

m=1

9 y 1
+ (gclm - C4m + ZCZm + @Clm> cosh 0y

1 . ) .
+— (Csp sinh 2,y + Cg,, cosh Amy)} sin o,,x,
c

6 [e%¢]
MY =M~ — ,@g +vD Z(Clm sinh a,,y + Cy,, cosh o,,y) sin o, x

m=1
00

D(1—v Z K@sz—c.%m+

m=1 m

. Clm) cosh o,y

+ (gclm - Cv4m + L C2m> sinh Yy
K- . .
ZA (Csp cosh 4,y + Cg sinh /lmy)} Sin o,,x,
M7 = MK — %’g i Cin sinh o,y + Cs,, cosh o) sin
w — My ox - 1m Oy 2m Amy X

1 -V Z |:<9C2m C3m % C]m) cosh 0y

m

-+ (chm — C4m + LCZW,) sinh Oy

m
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+ Z—A (Csp cosh 4,y + Cg,, sinh imy)} sin o,,.x,
c

m

6QK S 1
H _ 2K Y 2 y :
My = M+ A (1—v) ”EH {(ocm) K@Qm — Can + 5o Cim + 2 sz) sinh o,y

Qcm_cm
+< 1 n o

1
+ P Cyn + =—C,,, | cosha,,y
202

o .
+ 23 (22 4 02 )(Csy sinh 4,y + Cg, cosh 4,,) } COS O, X,
c

0" =0+D Z(ocm) [Clm sinh &,y + Cs,, cosh a,,,y
m=1

A Doy
20,

+ (1 —v)(Cs, cosh 4,y + Ce, sinh i,,,y)} COS Gy X,

o0

Qf = Qf +DZ(am) [Clm cosh o,y + C,,, sinh a,,y

m=1
42/ .
7 (1 = v)(Csy sinh 2,y + Cg,, cosh 4,,y) | sin a,x.

A.3. Clamped rectangular plates

Note that the displacement and rotation—slope relationships are not provided here since they have ap-
peared in the main text, Egs. (6.20) and (6.21).

M =M~ — i Cy,, cosh a,,y) cos o, x + Z D,, cosh f8,x) cos ﬂ,,y}
po n—1
D(1—v) { ZOO:I - [( Cip — C2m> cosh o,y + iClm sinh o,y
_ 'jf_o/};” Cs,, cosh /lmy} COS 0, X — nio;(ﬁi) [(%Dln - Dzn) cosh B,x
213,, — Dy, sinh B, x + &{z" D, cosh ﬁnx} cos ﬁny}
M}I; = M)’; — R i Cyncosho,y) cosa,x + v ZOO: D, cosh f3,x) cos ﬁ,,y]

= 9 .
+D(1 — v){ Z(afn) [(;Clm — C2m> cosha,,y + %Clm sinh o,y
m=1

m

A Do
-G, cosh /ln,y} COS 0, X
2o

m
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NN N7 A9,
_ Z(ﬁn) ED]” — Dy, | cosh . x + — Zﬂ Dy, sinh B x + ——-"Ds, coshd,x| cos B,y ¢,

n=1 ﬂ
Gl - 9 1
H __ K Yy 2 :
Mxy = Mxy + _@E — D(l — V) < mE:l {(Ofm) |:<yclm — C2m + EClm) sinh oy

o C .
+ % Ci,, cosh ocmy] ~ 52 (A + o )C;,,, sinh Amy} sin o,,x

+i{<ﬁ2>

n=1

@D D,, + ! Dy, | sinh ,x + al Dy, cosh f
% 1n 2n Zﬁi 1n X zﬁ,, 1n nX
2— (192 + B2)Ds, sinh ﬂnx} sin f3, )

QH QK +D{ Z [&{im(l —v)Cs, cosh 4,y — 0,Cy, cosh acmy] sin o,x
of . .
+ Z(ﬁn) {7 (1 = v)D;, sinh¥,x + Dy, sinh ﬁnx} cos ﬁny},
N inh i 1 inh /
Qf = Qf +D Z(ocm) Ci,n sinh o,y — 7( — v)Cs,, sinh 4,y | cos o, x

Z [%19,, 1 — v)Ds, coshd,x + f,Dy, cosh 3, x] smﬁ”y}

=1

3

(A.6)

Appendix B. Classical thin plate solutions
In this appendix, the classical plate solutions are provided for one to apply readily to bending rela-

tionships as derived in the earlier section and together with those specialized in Appendix A. The solutions
are furnished for the various plate problems considered wherever available.

B.1. Simply supported rectangular plates

B.1.1. Distributed moments along y = +b/2

In general, the distributed moment applied can be represented in Fourier series as (Timoshenko and
Woinowsky-Krieger, 1959)

My(x) = ZEm sianR COS 0L, X, (B.1)

m=1

where E,, = 4M,/mm for the particular case of uniformly distributed moment M,(x) = M,.
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(a) Symmetrical case. Myj|,_, =My, _ ;= Mo(x)
Consider such a symmetry and Eq. (B.1), one can write the deflection and stress resultants as

o0

1 b [ E,, ocmb b
wh(x,y) = 2DZS€ChT<E)( 5 hT cosh a,,y

. . MmN
— o,y sinh o,y smT COS 0L,,X,

" [ N
M (x,p) ZEmsech {_2v+(1 V) 3

tanh %] cosh o,y

— (1 = v)a,y sinh ocmy} sianTc COS 0L, X,

1 & onb ([ ) b
y) = 3 ;Emsech > { _2 —(1-=v) 7 tanhz] cosh o,y
+ (1 = v)a,ysinh ocmy} sianTt COS 0, X, (B.2)

o0

b .
%K(x7y) = Z (E,nsech% cosh ocmy) smmTTC COS 0, X,

(1—v) ZE se cham [(cxm tanhaizb— 1) sinh o,y

. mm .
— o,y cosh o,y | sin—— sin a,x,

NI'—‘E

MK(x>y) =

xy

2

o0

) . .
O (x,y) = — Z (amEmsech% cosh ocmy> smm?7T $in o,,.x,

m=1
00

b . .
Qf(x,y) = Z (ocmEmsechOCT7 sinh ocmy> smmTTc COS 0, X.

m=1

(b) Anti-symmetrical case. MJ|,_,» = —MJ| _,» = My(x)
For this case, the deflection and stress resultants can be derived as

1 & b ((E, b P,
wh(x,y) = EZ}COSGC}IT(&_&)(TCO 5 _

. mm
— oycosha,y s1n7 COS 0, X,

")) b owb
K m m .
M (x,) E E cosech—{ [2 + (1 —v)— 7 thT] sinh o,y

. mu
— (I = v)a,,ycosh oc,,,y} smT COS Ol X,

1 o0
x,y) = 3 ZEmcosech%b{ {2 —(1=v) oc,;b th—] sinh o,y
m=1

+ (1 — v)a,,y cosh fx,,,y} sian7t COS Ol X,

= o, .
ﬂK(x’y) = Z (Emcosechoc2 sinh amy> 51nn17TE COS 0, X,

m=1
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1 = b [ [ 0tb b
K _ _ m m m _
M (x,y) = 2(1 V) E Emcosech—2 Kz coth > 1> cosh a,,y

m=1

. . mn
— o,y sinh o,y smT SIn o,,x,

- b . . .
_ Z <oc,,,E,,,cosechOC2 sinh oc,,,y) smm7n sin o, x,
-

m
[o¢]
) . mmn
= E <amEmcosech; cosh ozmy> smT COS 0L, X.

m=1

B.1.2. Distributed moments along x = +a/2
Like the previous plate problem, one can express the distributed moment applied using Fourier series as
(Timoshenko and Woinowsky-Krieger, 1959)

ZF sm cosﬁny, (B.4)

where F, = 4M0 /nTc for the case of uniformly distributed moment My(y) = M,.

(a) Symmetrical case. MK|,_,;» = M{|.__,, = Mo(»)
In view of the loadmg symmetry and Eq. (B.4), the thin plate deflection and stress resultants are given as

wh (x,») 2DZS ch ,,a(ﬁ )(ﬁza anhﬁsa

— pB,xsinh ﬁ,,x) sing cos f3,y,

e i {2 (12 ) e

+ (1 —v)p,xsinh ﬁnx} sin% cos f3,y,

pa

] cosh f8,x

MK (x,y) ! { {2\} +(1 - )ﬁga tanh%] cosh 8,y

— (1 —v)p,xsinh ﬁny} sin% cos f3,y, (B.5)
MK (x,y) = nf; (F,,sech ﬁ;a ; ) sin% cos By,
M- (x,y) = %(1 Kﬁzat nhﬂz 1) sinh f,x

— p,xcosh ﬁnx} sin% sin f3,,y,

O (x,y) = Zx: (ﬂnFnsech ﬁ ga

n=1

Qf(w)—ni;(“

. nT
. ) sm7 cos f3,y,

i > sin% sin f3,,y.
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(b) Anti-symmetrical case. ME|,_,;» = —ME|.__,/» = Mo(y)
For the anti-symmetrical case, the deflection and stress resultants can be furnished as

(%) < ﬁ;a coth ﬁga sinh f§,x

nt

— p,xcosh ﬁ”x> sin 5 cos By,

Baa
2

l o0
K —
wh(x,y) = D HEZI cosech

1 & p.a p.a p.al .
K == E n (1 - ? n
M. (x,y) = 5 F,cosech 5 {[2 (I—v) 5 coth 5 }smhﬁ,,x

n=1

+ (1 —v)B,xcosh ,an} sin% cos B,y

1 & B.a Ba p.abl .
K _ n _ n n
M (x,y) = 3 E Fncosech—2 { [2\) +(1-v) 5 coth—2 ] sinh 3,y

n=1

— (I =v)B,xcosh ﬁ,,y} sin% cos f,.y,

NgE

ME(x,y) = (F,,cosech% sinh [3,7x> sin% cos B,

1

(1 —v) ZFncosech bra K nd coth% - l) cosh f8,x

B
I

M (x,y) =

| =

2 2

n=1

. . AT,
— pB,xsinh ﬁnx} sm% sin f3,,y,

Of(x,y) = f: (ﬁnﬂcosech
n=1

ﬁ;a cosh ﬁnx> sin% cos f,.y,

[o¢]

B B.a . . AT .
Qf(x,y) = — Z (ﬁnF,,cosech 5 sinh f8,x sin—- sin B.y.

n=1

B.2. Rectangular plates with two opposite simply supported edges

3065

(B.6)

The thin plate solutions for rectangular plates with two simply supported edges have been well-docu-
mented in many standard texts like Timoshenko and Woinowsky-Krieger (1959), Mansfield (1989) and
Reddy (1999) and they are presented herein for completeness. Much in the same fashion with the applied
edge moments, the applied transverse loading for the considered plate problem can be represented in the
Fourier sine series so long the shape of the loading function remains the same along every section per-

pendicular to the two opposite edges. The transverse loading can be generally written as

o0

qO(xay) = qu(y) sin U Xs

m=1

(B.7)

where ¢,,(y) = 4q¢/mm for the case of uniformly distributed load go(x, y) = go. With the transverse loading

given in such form, the deflection and stress resultants can be established as
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1 & g, . .
wh (x,y) = Z an () (14 A, cosh o,y + B,,a,y sinh a,y) sin a,,x,

B m=1 OC;
Kooy — N~ 40 , ,
M, (x,y)=— Z i {—=1+4+[2vB, — (1 — v)4,]cosha,,y — (1 — v)B,,,,y sinh &, v} sin a,x,
m=1 m
M (x,y) = — Z q";gy) {=v+ 2B, + (1 —v)4,]cosha,y + (1 — v)B,o,y sinh o,y } sin a,,x,
m=1 m
M5 (x,y) = — Z qmgy) (— 1+ 2B, cosh a,y) sin a,,x, (B.8)
m=1 O(m
ME(x,y) = —(1—v) "~ dny) (4 + By) sinh o,y + B0,y cosh o,y cos a,x
Xy ) m m m, m¥m, m m-vy

m=1 Orm
where

2 4 b tanh b 1

SSSS plates: A4, =-—>*——2%, B,=——-,
2cosh 2cosh >
1 + %8 coth %t

SCSC plates: 4,, = — —r 2

cosh > + 2 cosech %4>

1
B, = ,
cosh 22 4+ b cosech %P (B.9)

v(1 + v) sinh %2 — y(1 — v) %22 cogh 2t

SFSF plates: 4, = ( ) 2 ( )% 2

(3+v)(1 — v)sinh#? cosh? — (1 — v)* 22’
v(1 — v) sinh %2

" (34 v)(1 — v)sinh 2 cosh2? — (1 — v)* 2"

B

Note that the solutions presented apply to the coordinate system given in Fig. 2 and one can transform the
coordinate system to that as shown in Fig. 3 by substituting x = x + a/2.
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